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CHAPTER 1

Overview

The goal of the MyHDL project is to empower hardware designers with the elegance and
simplicity of the Python language.

MyHDL is a free, open-source package for using Python as a hardware description and ver-
ification language. Python is a very high level language, and hardware designers can use its
full power to model and simulate their designs. Moreover, MyHDL can convert a design to
Verilog or VHDL. This provides a path into a traditional design flow.

Modeling

Python’s power and clarity make MyHDL an ideal solution for high level modeling. Python
is famous for enabling elegant solutions to complex modeling problems. Moreover, Python is
outstanding for rapid application development and experimentation.

The key idea behind MyHDL is the use of Python generators to model hardware concurrency.
Generators are best described as resumable functions. MyHDL generators are similar to al-
ways blocks in Verilog and processes in VHDL.

A hardware module (called a block in MyHDL terminology) is modeled as a function that re-
turns generators. This approach makes it straightforward to support features such as arbitrary
hierarchy, named port association, arrays of instances, and conditional instantiation. Further-
more, MyHDL provides classes that implement traditional hardware description concepts. It
provides a signal class to support communication between generators, a class to support bit
oriented operations, and a class for enumeration types.

Simulation and Verification

The built-in simulator runs on top of the Python interpreter. It supports waveform viewing by
tracing signal changes in a VCD file.

With MyHDL, the Python unit test framework can be used on hardware designs. Although
unit testing is a popular modern software verification technique, it is still uncommon in the
hardware design world.

MyHDL can also be used as hardware verification language for Verilog designs, by co-
simulation with traditional HDL simulators.

1
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Conversion to Verilog and VHDL

Subject to some limitations, MyHDL designs can be converted to Verilog or VHDL. This pro-
vides a path into a traditional design flow, including synthesis and implementation. The con-
vertible subset is restricted, but much wider than the standard synthesis subset. It includes
features that can be used for high level modeling and test benches.

The converter works on an instantiated design that has been fully elaborated. Consequently,
the original design structure can be arbitrarily complex. Moreover, the conversion limitations
apply only to code inside generators. Outside generators, Python’s full power can be used
without compromising convertibility.

Finally, the converter automates a number of tasks that are hard in Verilog or VHDL directly.
A notable feature is the automated handling of signed arithmetic issues.

2 Chapter 1. Overview



CHAPTER 2

Background information

2.1 Prerequisites

You need a basic understanding of Python to use MyHDL. If you don’t know Python, don’t
worry: it is is one of the easiest programming languages to learn1. Learning Python is one of
the best time investments that engineering professionals can make2.

For starters, http://docs.python.org/tutorial is probably the best choice for an on-line tutorial.
For alternatives, see http://wiki.python.org/moin/BeginnersGuide.

A working knowledge of a hardware description language such as Verilog or VHDL is helpful.

Code examples in this manual are sometimes shortened for clarity. Complete executable ex-
amples can be found in the distribution directory at example/manual/.

2.2 A small tutorial on generators

Generators were introduced in Python 2.2. Because generators are the key concept in MyHDL,
a small tutorial is included here.

Consider the following nonsensical function:

def function():
for i in range(5):

return i

You can see why it doesn’t make a lot of sense. As soon as the first loop iteration is entered,
the function returns:

>>> function()
0

1 You must be bored by such claims, but in Python’s case it’s true.
2 I am not biased.

3
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Returning is fatal for the function call. Further loop iterations never get a chance, and nothing
is left over from the function call when it returns.

To change the function into a generator function, we replace return with yield:

def generator():
for i in range(5):

yield i

Now we get:

>>> generator()
<generator object at 0x815d5a8>

When a generator function is called, it returns a generator object. A generator object supports
the iterator protocol, which is an expensive way of saying that you can let it generate subse-
quent values by calling its next method:

>>> g = generator()
>>> g.next()
0
>>> g.next()
1
>>> g.next()
2
>>> g.next()
3
>>> g.next()
4
>>> g.next()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
StopIteration

Now we can generate the subsequent values from the for loop on demand, until they are
exhausted. What happens is that the yield statement is like a return, except that it is non-
fatal: the generator remembers its state and the point in the code when it yielded. A higher
order agent can decide when to get the next value by calling the generator’s next method. We
say that generators are resumable functions.

If you are familiar with hardware description languages, this may ring a bell. In hardware
simulations, there is also a higher order agent, the Simulator, that interacts with such resum-
able functions; they are called processes in VHDL and always blocks in Verilog. Similarly, Python
generators provide an elegant and efficient method to model concurrency, without having to
resort to some form of threading.

The use of generators to model concurrency is the first key concept in MyHDL. The second
key concept is a related one: in MyHDL, the yielded values are used to specify the conditions
on which the generator should wait before resuming. In other words, yield statements work
as general sensitivity lists.

2.3 About decorators

Python 2.4 introduced a feature called decorators. MyHDL takes advantage of this feature by
defining a number of decorators that facilitate hardware descriptions. However, some users

4 Chapter 2. Background information
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may not yet be familiar with decorators. Therefore, an introduction is included here.

A decorator consists of special syntax in front of a function declaration. It refers to a decorator
function. The decorator function automatically transforms the declared function into some
other callable object.

A decorator function deco is used in a decorator statement as follows:

@deco
def func(arg1, arg2, ...):

<body>

This code is equivalent to the following:

def func(arg1, arg2, ...):
<body>

func = deco(func)

Note that the decorator statement goes directly in front of the function declaration, and that
the function name func is automatically reused for the final result.

MyHDL uses decorators to create ready-to-simulate generators from local function definitions.
Their functionality and usage will be described extensively in this manual.

2.3. About decorators 5
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CHAPTER 3

Introduction to MyHDL

3.1 A basic MyHDL simulation

We will introduce MyHDL with a classic Hello World style example. All example code can
be found in the distribution directory under example/manual/. Here are the contents of a
MyHDL simulation script called hello1.py:

from myhdl import block, delay, always, now

@block
def HelloWorld():

@always(delay(10))
def say_hello():

print("%s Hello World!" % now())

return say_hello

inst = HelloWorld()
inst.run_sim(30)

When we run this simulation, we get the following output:

$ python hello1.py
10 Hello World!
20 Hello World!
30 Hello World!
<class 'myhdl._SuspendSimulation'>: Simulated 30 timesteps

The first line of the script imports a number of objects from the myhdl package. In Python we
can only use identifiers that are literally defined in the source file.

Then, we define a function called HelloWorld. In MyHDL, a hardware module is modeled by
a function decorated with the block decorator. The name block was chosen to avoid confusion

7



MyHDL manual, Release 0.11

with the Python concept of a module. We will use this terminology further on.

The parameter list of the HelloWorld function is used to define the interface of the hardware
block. In this first example, the interface is empty.

Inside the top level function we declare a local function called say_hello that defines the
desired behavior. This function is decorated with an always decorator that has a delay object
as its parameter. The meaning is that the function will be executed whenever the specified
delay interval has expired.

Behind the curtains, the always decorator creates a Python generator and reuses the name of
the decorated function for it. Generators are the fundamental objects in MyHDL, and we will
say much more about them further on.

Finally, the top level function returns the say_hello generator. This is the simplest case of
the basic MyHDL code pattern to define the contents of a hardware block. We will describe
the general case further on.

In MyHDL, we create an instance of a hardware block by calling the corresponding function.
The block decorator make sure that the return value is actually an instance of a block class,
with a useful API. In the example, variable inst refers to a HelloWorld block instance.

To simulate the instance, we use its run_sim method. We can use it to run the simulation for
the desired amount of timesteps.

3.2 Signals and concurrency

An actual hardware design is typically massively concurrent, which means that a large amount
of functional units are running in parallel. MyHDL supports this behavior by allowing an
arbitrary number of concurrently running generators.

With concurrency comes the problem of deterministic communication. Hardware languages
use special objects to support deterministic communication between concurrent code. In par-
ticular, MyHDL has a Signal object which is roughly modeled after VHDL signals.

We will demonstrate signals and concurrency by extending and modifying our first example.
We define a hardware block that contains two generators, one that drives a clock signal, and
one that is sensitive to a positive edge on a clock signal:

from myhdl import block, Signal, delay, always, now

@block
def HelloWorld():

clk = Signal(0)

@always(delay(10))
def drive_clk():

clk.next = not clk

@always(clk.posedge)
def say_hello():

print("%s Hello World!" % now())

return drive_clk, say_hello

(continues on next page)

8 Chapter 3. Introduction to MyHDL
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(continued from previous page)

inst = HelloWorld()
inst.run_sim(50)

The clock driver function clk_driver drives the clock signal. If defines a generator that
continuously toggles a clock signal after a certain delay. A new value of a signal is specified by
assigning to its next attribute. This is the MyHDL equivalent of the VHDL signal assignment
and the Verilog non-blocking assignment.

The say_hello function is modified from the first example. It is made sensitive to a rising
edge of the clock signal, specified by the posedge attribute of a signal. The edge specifier is
the argument of the always decorator. As a result, the decorated function will be executed on
every rising clock edge.

The clk signal is constructed with an initial value 0. One generator drives it, the other is
sensitive to it. The result of this communication is that the generators run in parallel, but that
their actions are coordinated by the clock signal.

When we run the simulation, we get:

$ python hello2.py
10 Hello World!
30 Hello World!
50 Hello World!
<class 'myhdl._SuspendSimulation'>: Simulated 50 timesteps

3.3 Parameters, ports and hierarchy

We have seen that MyHDL uses functions to model hardware blocks. So far these functions
did not have parameters. However, to create general, reusable blocks we will need parameters.
For example, we can create a clock driver block as follows:

from myhdl import block, delay, instance

@block
def ClkDriver(clk, period=20):

lowTime = int(period / 2)
highTime = period - lowTime

@instance
def drive_clk():

while True:
yield delay(lowTime)
clk.next = 1
yield delay(highTime)
clk.next = 0

return drive_clk

The block encapsulates a clock driver generator. It has two parameters.

3.3. Parameters, ports and hierarchy 9
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The first parameter is clk is the clock signal. A asignal parameter is MyHDL’s way to model a
dfn:port:. The second parameter is the clock period, with a default value of 20.

As the low time of the clock may differ from the high time in case of an odd period, we can-
not use the always decorator with a single delay value anymore. Instead, the drive_clk
function is now a generator function with an explicit definition of the desired behavior. It is
decorated with the instance decorator. You can see that drive_clk is a generator function
because it contains yield statements.

When a generator function is called, it returns a generator object. This is basically what the
instance decorator does. It is less sophisticated than the always decorator, but it can be
used to create a generator from any local generator function.

The yield statement is a general Python construct, but MyHDL uses it in a specific way. It
has a similar meaning as the wait statement in VHDL: the statement suspends execution of
a generator, and its clauses specify the conditions on which the generator should wait before
resuming. In this case, the generator waits for a certain delay.

Note that to make sure that the generator runs “forever”, we wrap its behavior in a while
True loop.

Similarly, we can define a general Hello function as follows:

from myhdl import block, always, now

@block
def Hello(clk, to="World!"):

@always(clk.posedge)
def say_hello():

print("%s Hello %s" % (now(), to))

return say_hello

We can create any number of instances by calling the functions with the appropriate param-
eters. Hierarchy can be modeled by defining the instances in a higher-level function, and
returning them. This pattern can be repeated for an arbitrary number of hierarchical levels.
Consequently, the general definition of a MyHDL instance is recursive: an instance is either a
sequence of instances, or a generator.

As an example, we will create a higher-level function with four instances of the lower-level
functions, and simulate it:

from myhdl import block, Signal

from ClkDriver import ClkDriver
from Hello import Hello

@block
def Greetings():

clk1 = Signal(0)
clk2 = Signal(0)

clkdriver_1 = ClkDriver(clk1) # positional and default association
(continues on next page)

10 Chapter 3. Introduction to MyHDL
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(continued from previous page)

clkdriver_2 = ClkDriver(clk=clk2, period=19) # named association
hello_1 = Hello(clk=clk1) # named and default association
hello_2 = Hello(to="MyHDL", clk=clk2) # named association

return clkdriver_1, clkdriver_2, hello_1, hello_2

inst = Greetings()
inst.run_sim(50)

As in standard Python, positional or named parameter association can be used in instanti-
ations, or a mix of both1. All these styles are demonstrated in the example above. Named
association can be very useful if there are a lot of parameters, as the argument order in the call
does not matter in that case.

The simulation produces the following output:

$ python greetings.py
9 Hello MyHDL
10 Hello World!
28 Hello MyHDL
30 Hello World!
47 Hello MyHDL
50 Hello World!
<class 'myhdl._SuspendSimulation'>: Simulated 50 timesteps

3.4 Terminology review

Some commonly used terminology has different meanings in Python versus hardware design.
For a good understanding, it is important to make these differences explicit.

A module in Python refers to all source code in a particular file. A module can be reused by
other modules by importing it. In hardware design on the other hand, a module typically
refers to a reusable unit of hardware with a well defined interface. Because these meanings
are so different, the terminology chosen for a hardware module in MyHDL is block instead, as
explained earlier in this chapter.

A hardware block can can be reused in another block by instantiating it.

An instance in Python (and other object-oriented languages) refers to the object created by a
class constructor. In hardware design, an instance is a particular incarnation of a hardware
block, created by instantiating the block. In MyHDL, such as block instance is actually an
instance of a particular class. Therefore, the two meanings are not exactly the same, but they
coincide nicely.

Normally, the meaning the words “block” and “instance” should be clear from the context.
Sometimes, we qualify them with the words “hardware” or “MyHDL” for clarity.

1 All positional parameters have to go before any named parameter.

3.4. Terminology review 11
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3.5 Some remarks on MyHDL and Python

To conclude this introductory chapter, it is useful to stress that MyHDL is not a language in
itself. The underlying language is Python, and MyHDL is implemented as a Python package
called myhdl. Moreover, it is a design goal to keep the myhdl package as minimalistic as
possible, so that MyHDL descriptions are very much “pure Python”.

To have Python as the underlying language is significant in several ways:

• Python is a very powerful high level language. This translates into high productivity and
elegant solutions to complex problems.

• Python is continuously improved by some very clever minds, supported by a large user
base. Python profits fully from the open source development model.

• Python comes with an extensive standard library. Some functionality is likely to be of
direct interest to MyHDL users: examples include string handling, regular expressions,
random number generation, unit test support, operating system interfacing and GUI
development. In addition, there are modules for mathematics, database connections,
networking programming, internet data handling, and so on.

3.6 Summary and perspective

Here is an overview of what we have learned in this chapter:

• Generators are the basic building blocks of MyHDL models. They provide the way to
model massive concurrency and sensitivity lists.

• MyHDL provides decorators that create useful generators from local functions and a
decorator to create hardware blocks.

• Hardware structure and hierarchy is described with Python functions, decorated with
the block decorator.

• Signal objects are used to communicate between concurrent generators.

• A block instance provides a method to simulate it.

These concepts are sufficient to start modeling and simulating with MyHDL.

However, there is much more to MyHDL. Here is an overview of what can be learned from the
following chapters:

• MyHDL supports hardware-oriented types that make it easier to write typical hardware
models. These are described in Chapter Hardware-oriented types.

• MyHDL supports sophisticated and high level modeling techniques. This is described in
Chapter High level modeling.

• MyHDL enables the use of modern software verification techniques, such as unit testing,
on hardware designs. This is the topic of Chapter Unit testing.

• It is possible to co-simulate MyHDL models with other HDL languages such as Verilog
and VHDL. This is described in Chapter Co-simulation with Verilog.

• Last but not least, MyHDL models can be converted to Verilog or VHDL, providing a
path to a silicon implementation. This is the topic of Chapter Conversion to Verilog and
VHDL.

12 Chapter 3. Introduction to MyHDL



CHAPTER 4

Hardware-oriented types

4.1 The intbv class

Hardware design involves dealing with bits and bit-oriented operations. The standard Python
type int has most of the desired features, but lacks support for indexing and slicing. For this
reason, MyHDL provides the intbv class. The name was chosen to suggest an integer with
bit vector flavor.

intbv works transparently with other integer-like types. Like class int, it provides access to
the underlying two’s complement representation for bitwise operations. However, unlike int,
it is a mutable type. This means that its value can be changed after object creation, through
methods and operators such as slice assignment.

intbv supports the same operators as int for arithmetic. In addition, it provides a number
of features to make it suitable for hardware design. First, the range of allowed values can be
constrained. This makes it possible to check the value at run time during simulation. More-
over, back end tools can determine the smallest possible bit width for representing the object.
Secondly, it supports bit level operations by providing an indexing and slicing interface.

intbv objects are constructed in general as follows:

intbv([val=None] [, min=None] [, max=None])

val is the initial value. min and max can be used to constrain the value. Following the Python
conventions, min is inclusive, and max is exclusive. Therefore, the allowed value range is min
.. max-1.

Let’s look at some examples. An unconstrained intbv object is created as follows:

>>> a = intbv(24)

After object creation, min and max are available as attributes for inspection. Also, the standard
Python function len can be used to determine the bit width. If we inspect the previously
created object, we get:
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>>> a
intbv(24)
>>> print(a.min)
None
>>> print(a.max)
None
>>> len(a)
0

As the instantiation was unconstrained, the min and max attributes are undefined. Likewise,
the bit width is undefined, which is indicated by a return value 0.

A constrained intbv object is created as follows:

>>> a = intbv(24, min=0, max=25)

Inspecting the object now gives:

>>> a
intbv(24)
>>> a.min
0
>>> a.max
25
>>> len(a)
5

We see that the allowed value range is 0 .. 24, and that 5 bits are required to represent the
object.

The min and max bound attributes enable fine-grained control and error checking of the value
range. In particular, the bound values do not have to be symmetric or powers of 2. In all cases,
the bit width is set appropriately to represent the values in the range. For example:

>>> a = intbv(6, min=0, max=7)
>>> len(a)
3
>>> a = intbv(6, min=-3, max=7)
>>> len(a)
4
>>> a = intbv(6, min=-13, max=7)
>>> len(a)
5

4.2 Bit indexing

A common requirement in hardware design is access to the individual bits. The intbv class
implements an indexing interface that provides access to the bits of the underlying two’s com-
plement representation. The following illustrates bit index read access:

>>> from myhdl import bin
>>> a = intbv(24)
>>> bin(a)

(continues on next page)
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(continued from previous page)

'11000'
>>> int(a[0])
0
>>> int(a[3])
1
>>> b = intbv(-23)
>>> bin(b)
'101001'
>>> int(b[0])
1
>>> int(b[3])
1
>>> int(b[4])
0

We use the bin function provide by MyHDL because it shows the two’s complement repre-
sentation for negative values, unlike Python’s builtin with the same name. Note that lower
indices correspond to less significant bits. The following code illustrates bit index assignment:

>>> bin(a)
'11000'
>>> a[3] = 0
>>> bin(a)
'10000'
>>> a
intbv(16)
>>> b
intbv(-23)
>>> bin(b)
'101001'
>>> b[3] = 0
>>> bin(b)
'100001'
>>> b
intbv(-31)

4.3 Bit slicing

The intbv type also supports bit slicing, for both read access assignment. For example:

>>> a = intbv(24)
>>> bin(a)
'11000'
>>> a[4:1]
intbv(4)
>>> bin(a[4:1])
'100'
>>> a[4:1] = 0b001
>>> bin(a)
'10010'
>>> a
intbv(18)

4.3. Bit slicing 15
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In accordance with the most common hardware convention, and unlike standard Python, slic-
ing ranges are downward. As in standard Python, the slicing range is half-open: the highest
index bit is not included. Unlike standard Python however, this index corresponds to the left-
most item.

Both indices can be omitted from the slice. If the rightmost index is omitted, it is 0 by default.
If the leftmost index is omitted, the meaning is to access “all” higher order bits. For example:

>>> bin(a)
'11000'
>>> bin(a[4:])
'1000'
>>> a[4:] = '0001'
>>> bin(a)
'10001'
>>> a[:] = 0b10101
>>> bin(a)
'10101'

The half-openness of a slice may seem awkward at first, but it helps to avoid one-off count
issues in practice. For example, the slice a[8:] has exactly 8 bits. Likewise, the slice a[7:2]
has 7-2=5 bits. You can think about it as follows: for a slice [i:j], only bits below index i
are included, and the bit with index j is the last bit included.

When an intbv object is sliced, a new intbv object is returned. This new intbv object is
always positive, and the value bounds are set up in accordance with the bit width specified by
the slice. For example:

>>> a = intbv(6, min=-3, max=7)
>>> len(a)
4
>>> b = a[4:]
>>> b
intbv(6L)
>>> len(b)
4
>>> b.min
0
>>> b.max
16

In the example, the original object is sliced with a slice equal to its bit width. The returned
object has the same value and bit width, but its value range consists of all positive values that
can be represented by the bit width.

The object returned by a slice is positive, even when the original object is negative:

>>> a = intbv(-3)
>>> bin(a, width=5)
'11101'
>>> b = a[5:]
>>> b
intbv(29L)
>>> bin(b)
'11101'

In this example, the bit pattern of the two objects is identical within the bit width, but their
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values have opposite sign.

Sometimes hardware engineers prefer to constrain an object by defining its bit width directly,
instead of the range of allowed values. Using the slicing properties of the intbv class one can
do that as follows:

>>> a = intbv(24)[5:]

What actually happens here is that first an unconstrained intbv is created, which is then
sliced. Slicing an intbv returns a new intbv with the constraints set up appropriately. In-
specting the object now shows:

>>> a.min
0
>>> a.max
32
>>> len(a)
5

Note that the max attribute is 32, as with 5 bits it is possible to represent the range 0 .. 31.
Creating an intbv in this way is convenient but has the disadvantage that only positive value
ranges between 0 and a power of 2 can be specified.

4.4 The modbv class

In hardware modeling, there is often a need for the elegant modeling of wrap-around behavior.
intbv instances do not support this automatically, as they assert that any assigned value is
within the bound constraints. However, wrap-around modeling can be straightforward. For
example, the wrap-around condition for a counter is often decoded explicitly, as it is needed for
other purposes. Also, the modulo operator provides an elegant one-liner in many scenarios:

count.next = (count + 1) % 2**8

However, some interesting cases are not supported by the intbv type. For example, we would
like to describe a free running counter using a variable and augmented assignment as follows:

count_var += 1

This is not possible with the intbv type, as we cannot add the modulo behavior to this de-
scription. A similar problem exist for an augmented left shift as follows:

shifter <<= 4

To support these operations directly, MyHDL provides the modbv type. modbv is imple-
mented as a subclass of intbv . The two classes have an identical interface and work together
in a straightforward way for arithmetic operations. The only difference is how the bounds are
handled: out-of-bound values result in an error with intbv , and in wrap-around with modbv .
For example, the modulo counter above can be modeled as follows:

count = Signal(modbv(0, min=0, max=2**8))
...
count.next = count + 1

The wrap-around behavior is defined in general as follows:

4.4. The modbv class 17
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val = (val - min) % (max - min) + min

In a typical case when min==0, this reduces to:

val = val % max

4.5 Unsigned and signed representation

intbv is designed to be as high level as possible. The underlying value of an intbv object is a
Python int, which is represented as a two’s complement number with “indefinite” bit width.
The range bounds are only used for error checking, and to calculate the minimum required bit
width for representation. As a result, arithmetic can be performed like with normal integers.

In contrast, HDLs such as Verilog and VHDL typically require designers to deal with represen-
tational issues, especially for synthesizable code. They provide low-level types like signed
and unsigned for arithmetic. The rules for arithmetic with such types are much more com-
plicated than with plain integers.

In some cases it can be useful to interpret intbv objects in terms of “signed” and “unsigned”.
Basically, it depends on attribute min. if min < 0, then the object is “signed”, otherwise it is
“unsigned”. In particular, the bit width of a “signed” object will account for a sign bit, but that
of an “unsigned” will not, because that would be redundant. From earlier sections, we have
learned that the return value from a slicing operation is always “unsigned”.

In some applications, it is desirable to convert an “unsigned” intbv to a “signed”, in other
words, to interpret the msb bit as a sign bit. The msb bit is the highest order bit within the ob-
ject’s bit width. For this purpose, intbv provides the intbv.signed method. For example:

>>> a = intbv(12, min=0, max=16)
>>> bin(a)
'1100'
>>> b = a.signed()
>>> b
-4
>>> bin(b, width=4)
'1100'

intbv.signed extends the msb bit into the higher-order bits of the underlying object value,
and returns the result as an integer. Naturally, for a “signed” the return value will always be
identical to the original value, as it has the sign bit already.

As an example let’s take a 8 bit wide data bus that would be modeled as follows:

data_bus = intbv(0)[8:]

Now consider that a complex number is transferred over this data bus. The upper 4 bits of
the data bus are used for the real value and the lower 4 bits for the imaginary value. As real
and imaginary values have a positive and negative value range, we can slice them off from the
data bus and convert them as follows:

real.next = data_bus[8:4].signed()
imag.next = data_bus[4:].signed()
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CHAPTER 5

Structural modeling

5.1 Introduction

Hardware descriptions need to support the concepts of module instantiation and hierarchy.
In MyHDL, an instance is recursively defined as being either a sequence of instances, or a
generator. Hierarchy is modeled by defining instances in a higher-level function, and returning
them. The following is a schematic example of the basic case.

from myhdl import block

@block
def top(...):

...
instance_1 = module_1(...)
instance_2 = module_2(...)
...
instance_n = module_n(...)
...
return instance_1, instance_2, ... , instance_n

Note that MyHDL uses conventional procedural techniques for modeling structure. This
makes it straightforward to model more complex cases.

5.2 Conditional instantiation

To model conditional instantiation, we can select the returned instance under parameter con-
trol. For example:

from myhdl import block

SLOW, MEDIUM, FAST = range(3)

(continues on next page)
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(continued from previous page)

@block
def top(..., speed=SLOW):

...
def slowAndSmall():

...
...
def fastAndLarge():

...
if speed == SLOW:

return slowAndSmall()
elif speed == FAST:

return fastAndLarge()
else:

raise NotImplementedError

5.2.1 Lists of instances and signals

Python lists are easy to create. We can use them to model lists of instances.

Suppose we have a top module that instantiates a single channel submodule, as follows:

from myhdl import block, Signal

@block
def top(...):

din = Signal(0)
dout = Signal(0)
clk = Signal(bool(0))
reset = Signal(bool(0))

channel_inst = channel(dout, din, clk, reset)

return channel_inst

If we wanted to support an arbitrary number of channels, we can use lists of signals and a list
of instances, as follows:

from myhdl import block, Signal

@block
def top(..., n=8):

din = [Signal(0) for i in range(n)]
dout = [Signal(0) for in range(n)]
clk = Signal(bool(0))
reset = Signal(bool(0))
channel_inst = [None for i in range(n)]

for i in range(n):
channel_inst[i] = channel(dout[i], din[i], clk, reset)

return channel_inst
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5.3 Converting between lists of signals and bit vectors

Compared to HDLs such as VHDL and Verilog, MyHDL signals are less flexible for structural
modeling. For example, slicing a signal returns a slice of the current value. For behavioral
code, this is just fine. However, it implies that you cannot use such as slice in structural de-
scriptions. In other words, a signal slice cannot be used as a signal.

In MyHDL, you can address such cases by a concept called shadow signals. A shadow signal
is constructed out of other signals and follows their value changes automatically. For example,
a _SliceSignal follows the value of an index or a slice from another signal. Likewise, A
ConcatSignal follows the values of a number of signals as a concatenation.

As an example, suppose we have a system with N requesters that need arbitration. Each
requester has a request output and a grant input. To connect them in the system, we can
use list of signals. For example, a list of request signals can be constructed as follows:

request_list = [Signal(bool()) for i in range(M)]

Suppose that an arbiter module is available that is instantiated as follows:

arb = arbiter(grant_vector, request_vector, clock, reset)

The request_vector input is a bit vector that can have any of its bits asserted. The
grant_vector is an output bit vector with just a single bit asserted, or none. Such a module
is typically based on bit vectors because they are easy to process in RTL code. In MyHDL, a bit
vector is modeled using the intbv type.

We need a way to “connect” the list of signals to the bit vector and vice versa. Of course, we
can do this with explicit code, but shadow signals can do this automatically. For example, we
can construct a request_vector as a ConcatSignal object:

request_vector = ConcatSignal(*reversed(request_list)

Note that we reverse the list first. This is done because the index range of lists is the inverse of
the range of intbv bit vectors. By reversing, the indices correspond to the same bit.

The inverse problem exist for the grant_vector. It would be defined as follows:

grant_vector = Signal(intbv(0)[M:])

To construct a list of signals that are connected automatically to the bit vector, we can use the
Signal call interface to construct _SliceSignal objects:

grant_list = [grant_vector(i) for i in range(M)]

Note the round brackets used for this type of slicing. Also, it may not be necessary to construct
this list explicitly. You can simply use grant_vector(i) in an instantiation.

To decide when to use normal or shadow signals, consider the data flow. Use normal signals
to connect to outputs. Use shadow signals to transform these signals so that they can be used
as inputs.
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5.4 Inferring the list of instances

In MyHDL, instances have to be returned explicitly by a top level function. It may be conve-
nient to assemble the list of instances automatically. For this purpose, MyHDL provides the
function instances. Using the first example in this section, it is used as follows:

from myhdl import block, instances

@block
def top(...):

...
instance_1 = module_1(...)
instance_2 = module_2(...)
...
instance_n = module_n(...)
...
return instances()

Function instances uses introspection to inspect the type of the local variables defined by
the calling function. All variables that comply with the definition of an instance are assembled
in a list, and that list is returned.
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CHAPTER 6

RTL modeling

6.1 Introduction

RTL (Register Transfer Level) is a modeling abstraction level that is typically used to write
synthesizable models. Synthesis refers to the process by which an HDL description is auto-
matically compiled into an implementation for an ASIC or FPGA. This chapter describes how
MyHDL supports it.

6.2 Combinatorial logic

6.2.1 Template

Combinatorial logic is described with a code pattern as follows:

from myhdl import block, always_comb

@block
def top(<parameters>):

...
@always_comb
def comb_logic():

<functional code>
...
return comb_logic, ...

The always_comb decorator describes combinatorial logic. The name refers to a similar con-
struct in SystemVerilog. The decorated function is a local function that specifies what happens
when one of the input signals of the logic changes. The always_comb decorator infers the in-
put signals automatically. It returns a generator that is sensitive to all inputs, and that executes
the function whenever an input changes.

23



MyHDL manual, Release 0.11

6.2.2 Example

The following is an example of a combinatorial multiplexer

from myhdl import block, always_comb, Signal

@block
def mux(z, a, b, sel):

""" Multiplexer.

z -- mux output
a, b -- data inputs
sel -- control input: select a if asserted, otherwise b

"""

@always_comb
def comb():

if sel == 1:
z.next = a

else:
z.next = b

return comb

To verify it, we will simulate the logic with some random patterns. The random module in
Python’s standard library comes in handy for such purposes. The function randrange(n)
returns a random natural integer smaller than n. It is used in the test bench code to produce
random input values.

import random
from myhdl import block, instance, Signal, intbv, delay
from mux import mux

random.seed(5)
randrange = random.randrange

@block
def test_mux():

z, a, b, sel = [Signal(intbv(0)) for i in range(4)]

mux_1 = mux(z, a, b, sel)

@instance
def stimulus():

print("z a b sel")
for i in range(12):

a.next, b.next, sel.next = randrange(8), randrange(8),
→˓randrange(2)

yield delay(10)
print("%s %s %s %s" % (z, a, b, sel))

return mux_1, stimulus

(continues on next page)
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tb = test_mux()
tb.run_sim()

It is often useful to keep the random values reproducible. This can be accomplished by pro-
viding a seed value as in the code. The run produces the following output:

$ python test_mux.py
z a b sel
5 4 5 0
3 7 3 0
2 2 1 1
7 7 3 1
3 1 3 0
3 3 6 1
6 2 6 0
1 1 2 1
2 2 2 0
3 0 3 0
2 2 2 1
3 5 3 0
<class 'myhdl.StopSimulation'>: No more events

6.3 Sequential logic

6.3.1 Template

Sequential RTL models are sensitive to a clock edge. In addition, they may be sensitive to a
reset signal. The always_seq decorator supports this model directly:

from myhdl import block, always_seq

@block
def top(<parameters>, clock, ..., reset, ...):

...
@always_seq(clock.posedge, reset=reset)
def seq_logic():

<functional code>
...
return seq_logic, ...

The always_seq decorator automatically infers the reset functionality. It detects which sig-
nals need to be reset, and uses their initial values as the reset values. The reset signal itself
needs to be specified as a ResetSignal object. For example:

reset = ResetSignal(0, active=0, isasync=True)

The first parameter specifies the initial value. The active parameter specifies the value on which
the reset is active, and the isasync parameter specifies whether it is an asychronous (True) or
a synchronous (False) reset. If no reset is needed, you can assign None to the reset parameter
in the always_seq parameter.
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6.3.2 Example

The following code is a description of an incrementer with enable, and an asynchronous reset.

from myhdl import block, always_seq

@block
def inc(count, enable, clock, reset):

""" Incrementer with enable.

count -- output
enable -- control input, increment when 1
clock -- clock input
reset -- asynchronous reset input
"""

@always_seq(clock.posedge, reset=reset)
def seq():

if enable:
count.next = count + 1

return seq

For the test bench, we will use an independent clock generator, stimulus generator, and moni-
tor. After applying enough stimulus patterns, we can raise the StopSimulation exception to
stop the simulation run. The test bench for a small incrementer and a small number of patterns
is a follows

import random
from myhdl import block, always, instance, Signal, \

ResetSignal, modbv, delay, StopSimulation
from inc import inc

random.seed(1)
randrange = random.randrange

ACTIVE_LOW, INACTIVE_HIGH = 0, 1

@block
def testbench():

m = 3
count = Signal(modbv(0)[m:])
enable = Signal(bool(0))
clock = Signal(bool(0))
reset = ResetSignal(0, active=0, isasync=True)

inc_1 = inc(count, enable, clock, reset)

HALF_PERIOD = delay(10)

@always(HALF_PERIOD)
def clockGen():

clock.next = not clock

@instance
def stimulus():

(continues on next page)
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reset.next = ACTIVE_LOW
yield clock.negedge
reset.next = INACTIVE_HIGH
for i in range(16):

enable.next = min(1, randrange(3))
yield clock.negedge

raise StopSimulation()

@instance
def monitor():

print("enable count")
yield reset.posedge
while 1:

yield clock.posedge
yield delay(1)
print(" %s %s" % (int(enable), count))

return clockGen, stimulus, inc_1, monitor

tb = testbench()
tb.run_sim()

The simulation produces the following output

$ python test_inc.py
enable count

0 0
1 1
0 1
1 2
0 2
1 3
1 4
1 5
1 6
1 7
0 7
0 7
1 0
0 0
1 1
1 2

6.3.3 Alternative template

The template with the always_seq decorator is convenient as it infers the reset functionality
automatically. Alternatively, you can use a more explicit template as follows:

from myhdl import block, always

@block
def top(<parameters>, clock, ..., reset, ...):

...
@always(clock.posedge, reset.negedge)

(continues on next page)
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def seq_logic():
if not reset:

<reset code>
else:

<functional code>

return seq_logic,...

With this template, the reset values have to be specified explicitly.

6.4 Finite State Machine modeling

Finite State Machine (FSM) modeling is very common in RTL design and therefore deserves
special attention.

For code clarity, the state values are typically represented by a set of identifiers. A standard
Python idiom for this purpose is to assign a range of integers to a tuple of identifiers, like so

>>> SEARCH, CONFIRM, SYNC = range(3)
>>> CONFIRM
1

However, this technique has some drawbacks. Though it is clearly the intention that the iden-
tifiers belong together, this information is lost as soon as they are defined. Also, the identifiers
evaluate to integers, whereas a string representation of the identifiers would be preferable. To
solve these issues, we need an enumeration type.

MyHDL supports enumeration types by providing a function enum. The arguments to enum
are the string representations of the identifiers, and its return value is an enumeration type.
The identifiers are available as attributes of the type. For example

>>> from myhdl import enum
>>> t_State = enum('SEARCH', 'CONFIRM', 'SYNC')
>>> t_State
<Enum: SEARCH, CONFIRM, SYNC>
>>> t_State.CONFIRM
CONFIRM

We can use this type to construct a state signal as follows:

state = Signal(t_State.SEARCH)

As an example, we will use a framing controller FSM. It is an imaginary example, but similar
control structures are often found in telecommunication applications. Suppose that we need to
find the Start Of Frame (SOF) position of an incoming frame of bytes. A sync pattern detector
continuously looks for a framing pattern and indicates it to the FSM with a syncFlag signal.
When found, the FSM moves from the initial SEARCH state to the CONFIRM state. When the
syncFlag is confirmed on the expected position, the FSM declares SYNC, otherwise it falls
back to the SEARCH state. This FSM can be coded as follows

from myhdl import block, always_seq, Signal, intbv, enum

(continues on next page)
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ACTIVE_LOW = 0
FRAME_SIZE = 8
t_state = enum('SEARCH', 'CONFIRM', 'SYNC')

@block
def framer_ctrl(sof, state, sync_flag, clk, reset_n):

""" Framing control FSM.

sof -- start-of-frame output bit
state -- FramerState output
sync_flag -- sync pattern found indication input
clk -- clock input
reset_n -- active low reset

"""

index = Signal(intbv(0, min=0, max=FRAME_SIZE)) # position in frame

@always_seq(clk.posedge, reset=reset_n)
def FSM():

if reset_n == ACTIVE_LOW:
sof.next = 0
index.next = 0
state.next = t_state.SEARCH

else:
index.next = (index + 1) % FRAME_SIZE
sof.next = 0

if state == t_state.SEARCH:
index.next = 1
if sync_flag:

state.next = t_state.CONFIRM

elif state == t_state.CONFIRM:
if index == 0:

if sync_flag:
state.next = t_state.SYNC

else:
state.next = t_state.SEARCH

elif state == t_state.SYNC:
if index == 0:

if not sync_flag:
state.next = t_state.SEARCH

sof.next = (index == FRAME_SIZE-1)

else:
raise ValueError("Undefined state")

return FSM

At this point, we will use the example to demonstrate the MyHDL support for waveform
viewing. During simulation, signal changes can be written to a VCD output file. The VCD file
can then be loaded and viewed in a waveform viewer tool such as gtkwave.
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The user interface of this feature consists of a single function, traceSignals. To explain how
it works, recall that in MyHDL, an instance is created by assigning the result of a function call
to an instance name. For example:

tb_fsm = testbench()

To enable VCD tracing, the instance should be created as follows instead:

tb_fsm = traceSignals(testbench)

Note that the first argument of traceSignals consists of the uncalled function. By calling the
function under its control, traceSignals gathers information about the hierarchy and the
signals to be traced. In addition to a function argument, traceSignals accepts an arbitrary
number of non-keyword and keyword arguments that will be passed to the function call.

A small test bench for our framing controller example, with signal tracing enabled, is shown
below:

import myhdl
from myhdl import block, always, instance, Signal, ResetSignal, delay,
→˓StopSimulation
from fsm import framer_ctrl, t_state

ACTIVE_LOW = 0

@block
def testbench():

sof = Signal(bool(0))
sync_flag = Signal(bool(0))
clk = Signal(bool(0))
reset_n = ResetSignal(1, active=ACTIVE_LOW, isasync=True)
state = Signal(t_state.SEARCH)

frame_ctrl_0 = framer_ctrl(sof, state, sync_flag, clk, reset_n)

@always(delay(10))
def clkgen():

clk.next = not clk

@instance
def stimulus():

for i in range(3):
yield clk.negedge

for n in (12, 8, 8, 4):
sync_flag.next = 1
yield clk.negedge
sync_flag.next = 0
for i in range(n-1):

yield clk.negedge
raise StopSimulation()

return frame_ctrl_0, clkgen, stimulus

tb = testbench()
tb.config_sim(trace=True)
tb.run_sim()
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When we run the test bench, it generates a VCD file called testbench.vcd. When we load
this file into gtkwave, we can view the waveforms:

Signals are dumped in a suitable format. This format is inferred at the Signal construction
time, from the type of the initial value. In particular, bool signals are dumped as single bits.
(This only works starting with Python 2.3, when bool has become a separate type). Likewise,
intbv signals with a defined bit width are dumped as bit vectors. To support the general case,
other types of signals are dumped as a string representation, as returned by the standard str
function.

Warning: Support for literal string representations is not part of the VCD standard. It
is specific to gtkwave. To generate a standard VCD file, you need to use signals with a
defined bit width only.
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CHAPTER 7

High level modeling

7.1 Introduction

To write synthesizable models in MyHDL, you should stick to the RTL templates shown in
RTL modeling. However, modeling in MyHDL is much more powerful than that. Conceptually,
MyHDL is a library for general event-driven modeling and simulation of hardware systems.

There are many reasons why it can be useful to model at a higher abstraction level than RTL.
For example, you can use MyHDL to verify architectural features, such as system throughput,
latency and buffer sizes. You can also write high level models for specialized technology-
dependent cores that are not going through synthesis. Last but not least, you can use MyHDL
to write test benches that verify a system model or a synthesizable description.

This chapter explores some of the options for high level modeling with MyHDL.

7.2 Modeling with bus-functional procedures

A bus-functional procedure is a reusable encapsulation of the low-level operations needed to
implement some abstract transaction on a physical interface. Bus-functional procedures are
typically used in flexible verification environments.

Once again, MyHDL uses generator functions to support bus-functional procedures. In My-
HDL, the difference between instances and bus-functional procedure calls comes from the way
in which a generator function is used.

As an example, we will design a bus-functional procedure of a simplified UART transmitter.
We assume 8 data bits, no parity bit, and a single stop bit, and we add print statements to
follow the simulation behavior:

T_9600 = int(1e9 / 9600)

def rs232_tx(tx, data, duration=T_9600):

(continues on next page)
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""" Simple rs232 transmitter procedure.

tx -- serial output data
data -- input data byte to be transmitted
duration -- transmit bit duration

"""

print "-- Transmitting %s --" % hex(data)
print "TX: start bit"
tx.next = 0
yield delay(duration)

for i in range(8):
print "TX: %s" % data[i]
tx.next = data[i]
yield delay(duration)

print "TX: stop bit"
tx.next = 1
yield delay(duration)

This looks exactly like the generator functions in previous sections. It becomes a bus-functional
procedure when we use it differently. Suppose that in a test bench, we want to generate a
number of data bytes to be transmitted. This can be modeled as follows:

testvals = (0xc5, 0x3a, 0x4b)

def stimulus():
tx = Signal(1)
for val in testvals:

txData = intbv(val)
yield rs232_tx(tx, txData)

We use the bus-functional procedure call as a clause in a yield statement. This introduces a
fourth form of the yield statement: using a generator as a clause. Although this is a more
dynamic usage than in the previous cases, the meaning is actually very similar: at that point,
the original generator should wait for the completion of a generator. In this case, the original
generator resumes when the rs232_tx(tx, txData) generator returns.

When simulating this, we get:

-- Transmitting 0xc5 --
TX: start bit
TX: 1
TX: 0
TX: 1
TX: 0
TX: 0
TX: 0
TX: 1
TX: 1
TX: stop bit
-- Transmitting 0x3a --

(continues on next page)
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TX: start bit
TX: 0
TX: 1
TX: 0
TX: 1
...

We will continue with this example by designing the corresponding UART receiver bus-
functional procedure. This will allow us to introduce further capabilities of MyHDL and its
use of the yield statement.

Until now, the yield statements had a single clause. However, they can have multiple clauses
as well. In that case, the generator resumes as soon as the wait condition specified by one of
the clauses is satisfied. This corresponds to the functionality of sensitivity lists in Verilog and
VHDL.

For example, suppose we want to design an UART receive procedure with a timeout. We
can specify the timeout condition while waiting for the start bit, as in the following generator
function:

def rs232_rx(rx, data, duration=T_9600, timeout=MAX_TIMEOUT):

""" Simple rs232 receiver procedure.

rx -- serial input data
data -- data received
duration -- receive bit duration

"""

# wait on start bit until timeout
yield rx.negedge, delay(timeout)
if rx == 1:

raise StopSimulation, "RX time out error"

# sample in the middle of the bit duration
yield delay(duration // 2)
print "RX: start bit"

for i in range(8):
yield delay(duration)
print "RX: %s" % rx
data[i] = rx

yield delay(duration)
print "RX: stop bit"
print "-- Received %s --" % hex(data)

If the timeout condition is triggered, the receive bit rx will still be 1. In that case, we raise an
exception to stop the simulation. The StopSimulation exception is predefined in MyHDL
for such purposes. In the other case, we proceed by positioning the sample point in the middle
of the bit duration, and sampling the received data bits.

When a yield statement has multiple clauses, they can be of any type that is supported as a
single clause, including generators. For example, we can verify the transmitter and receiver
generator against each other by yielding them together, as follows:
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def test():
tx = Signal(1)
rx = tx
rxData = intbv(0)
for val in testvals:

txData = intbv(val)
yield rs232_rx(rx, rxData), rs232_tx(tx, txData)

Both forked generators will run concurrently, and the original generator will resume as soon as
one of them finishes (which will be the transmitter in this case). The simulation output shows
how the UART procedures run in lockstep:

-- Transmitting 0xc5 --
TX: start bit
RX: start bit
TX: 1
RX: 1
TX: 0
RX: 0
TX: 1
RX: 1
TX: 0
RX: 0
TX: 0
RX: 0
TX: 0
RX: 0
TX: 1
RX: 1
TX: 1
RX: 1
TX: stop bit
RX: stop bit
-- Received 0xc5 --
-- Transmitting 0x3a --
TX: start bit
RX: start bit
TX: 0
RX: 0
...

For completeness, we will verify the timeout behavior with a test bench that disconnects the
rx from the tx signal, and we specify a small timeout for the receive procedure:

def testTimeout():
tx = Signal(1)
rx = Signal(1)
rxData = intbv(0)
for val in testvals:

txData = intbv(val)
yield rs232_rx(rx, rxData, timeout=4*T_9600-1), rs232_tx(tx,

→˓txData)

The simulation now stops with a timeout exception after a few transmit cycles:
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-- Transmitting 0xc5 --
TX: start bit
TX: 1
TX: 0
TX: 1
StopSimulation: RX time out error

Recall that the original generator resumes as soon as one of the forked generators returns. In
the previous cases, this is just fine, as the transmitter and receiver generators run in lockstep.
However, it may be desirable to resume the caller only when all of the forked generators have
finished. For example, suppose that we want to characterize the robustness of the transmitter
and receiver design to bit duration differences. We can adapt our test bench as follows, to run
the transmitter at a faster rate:

T_10200 = int(1e9 / 10200)

def testNoJoin():
tx = Signal(1)
rx = tx
rxData = intbv(0)
for val in testvals:

txData = intbv(val)
yield rs232_rx(rx, rxData), rs232_tx(tx, txData, duration=T_10200)

Simulating this shows how the transmission of the new byte starts before the previous one is
received, potentially creating additional transmission errors:

-- Transmitting 0xc5 --
TX: start bit
RX: start bit
...
TX: 1
RX: 1
TX: 1
TX: stop bit
RX: 1
-- Transmitting 0x3a --
TX: start bit
RX: stop bit
-- Received 0xc5 --
RX: start bit
TX: 0

It is more likely that we want to characterize the design on a byte by byte basis, and align the
two generators before transmitting each byte. In MyHDL, this is done with the join function.
By joining clauses together in a yield statement, we create a new clause that triggers only
when all of its clause arguments have triggered. For example, we can adapt the test bench as
follows:

def testJoin():
tx = Signal(1)
rx = tx
rxData = intbv(0)
for val in testvals:

txData = intbv(val)

(continues on next page)
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yield join(rs232_rx(rx, rxData), rs232_tx(tx, txData, duration=T_
→˓10200))

Now, transmission of a new byte only starts when the previous one is received:

-- Transmitting 0xc5 --
TX: start bit
RX: start bit
...
TX: 1
RX: 1
TX: 1
TX: stop bit
RX: 1
RX: stop bit
-- Received 0xc5 --
-- Transmitting 0x3a --
TX: start bit
RX: start bit
TX: 0
RX: 0

7.3 Modeling memories with built-in types

Python has powerful built-in data types that can be useful to model hardware memories. This
can be merely a matter of putting an interface around some data type operations.

For example, a dictionary comes in handy to model sparse memory structures. (In other lan-
guages, this data type is called associative array, or hash table.) A sparse memory is one in which
only a small part of the addresses is used in a particular application or simulation. Instead
of statically allocating the full address space, which can be large, it is better to dynamically
allocate the needed storage space. This is exactly what a dictionary provides. The following is
an example of a sparse memory model:

def sparseMemory(dout, din, addr, we, en, clk):

""" Sparse memory model based on a dictionary.

Ports:
dout -- data out
din -- data in
addr -- address bus
we -- write enable: write if 1, read otherwise
en -- interface enable: enabled if 1
clk -- clock input

"""

memory = {}

@always(clk.posedge)
def access():

if en:
(continues on next page)
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if we:
memory[addr.val] = din.val

else:
dout.next = memory[addr.val]

return access

Note how we use the val attribute of the din signal, as we don’t want to store the signal
object itself, but its current value. Similarly, we use the val attribute of the addr signal as the
dictionary key.

In many cases, MyHDL code uses a signal’s current value automatically when there is no
ambiguity: for example, when a signal is used in an expression. However, in other cases, such
as in this example, you have to refer to the value explicitly: for example, when the Signal is
used as a dictionary key, or when it is not used in an expression. One option is to use the
val attribute, as in this example. Another possibility is to use the int() or bool() functions
to typecast the Signal to an integer or a boolean value. These functions are also useful with
intbv objects.

As a second example, we will demonstrate how to use a list to model a synchronous fifo:

def fifo(dout, din, re, we, empty, full, clk, maxFilling=sys.maxint):

""" Synchronous fifo model based on a list.

Ports:
dout -- data out
din -- data in
re -- read enable
we -- write enable
empty -- empty indication flag
full -- full indication flag
clk -- clock input

Optional parameter:
maxFilling -- maximum fifo filling, "infinite" by default

"""

memory = []

@always(clk.posedge)
def access():

if we:
memory.insert(0, din.val)

if re:
dout.next = memory.pop()

filling = len(memory)
empty.next = (filling == 0)
full.next = (filling == maxFilling)

return access

Again, the model is merely a MyHDL interface around some operations on a list: insert to
insert entries, pop to retrieve them, and len to get the size of a Python object.
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7.4 Modeling errors using exceptions

In the previous section, we used Python data types for modeling. If such a type is used inap-
propriately, Python’s run time error system will come into play. For example, if we access an
address in the sparseMemory model that was not initialized before, we will get a traceback
similar to the following (some lines omitted for clarity):

Traceback (most recent call last):
...

File "sparseMemory.py", line 31, in access
dout.next = memory[addr.val]

KeyError: Signal(51)

Similarly, if the fifo is empty, and we attempt to read from it, we get:

Traceback (most recent call last):
...

File "fifo.py", line 34, in fifo
dout.next = memory.pop()

IndexError: pop from empty list

Instead of these low level errors, it may be preferable to define errors at the functional level.
In Python, this is typically done by defining a custom Error exception, by subclassing the
standard Exception class. This exception is then raised explicitly when an error condition
occurs.

For example, we can change the sparseMemory function as follows (with the doc string is
omitted for brevity):

class Error(Exception):
pass

def sparseMemory2(dout, din, addr, we, en, clk):

memory = {}

@always(clk.posedge)
def access():

if en:
if we:

memory[addr.val] = din.val
else:

try:
dout.next = memory[addr.val]

except KeyError:
raise Error, "Uninitialized address %s" % hex(addr)

return access

This works by catching the low level data type exception, and raising the custom exception
with an appropriate error message instead. If the sparseMemory function is defined in a
module with the same name, an access error is now reported as follows:

Traceback (most recent call last):
...

(continues on next page)
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File "sparseMemory.py", line 61, in access
raise Error, "Uninitialized address %s" % hex(addr)

Error: Uninitialized address 0x33

Likewise, the fifo function can be adapted as follows, to report underflow and overflow
errors:

class Error(Exception):
pass

def fifo2(dout, din, re, we, empty, full, clk, maxFilling=sys.maxint):

memory = []

@always(clk.posedge)
def access():

if we:
memory.insert(0, din.val)

if re:
try:

dout.next = memory.pop()
except IndexError:

raise Error, "Underflow -- Read from empty fifo"
filling = len(memory)
empty.next = (filling == 0)
full.next = (filling == maxFilling)
if filling > maxFilling:

raise Error, "Overflow -- Max filling %s exceeded" % maxFilling

return access

In this case, the underflow error is detected as before, by catching a low level exception on
the list data type. On the other hand, the overflow error is detected by a regular check on the
length of the list.

7.5 Object oriented modeling

The models in the previous sections used high-level built-in data types internally. However,
they had a conventional RTL-style interface. Communication with such a module is done
through signals that are attached to it during instantiation.

A more advanced approach is to model hardware blocks as objects. Communication with
objects is done through method calls. A method encapsulates all details of a certain task per-
formed by the object. As an object has a method interface instead of an RTL-style hardware
interface, this is a much higher level approach.

As an example, we will design a synchronized queue object. Such an object can be filled by pro-
ducer, and independently read by a consumer. When the queue is empty, the consumer should
wait until an item is available. The queue can be modeled as an object with a put(item) and
a get method, as follows:
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from myhdl import *

def trigger(event):
event.next = not event

class queue:
def __init__(self):

self.l = []
self.sync = Signal(0)
self.item = None

def put(self,item):
# non time-consuming method
self.l.append(item)
trigger(self.sync)

def get(self):
# time-consuming method
if not self.l:

yield self.sync
self.item = self.l.pop(0)

The queue object constructor initializes an internal list to hold items, and a sync signal to
synchronize the operation between the methods. Whenever put puts an item in the queue,
the signal is triggered. When the get method sees that the list is empty, it waits on the trigger
first. get is a generator method because it may consume time. As the yield statement is
used in MyHDL for timing control, the method cannot “yield” the item. Instead, it makes it
available in the item instance variable.

To test the queue operation, we will model a producer and a consumer in the test bench. As
a waiting consumer should not block a whole system, it should run in a concurrent “thread”.
As always in MyHDL, concurrency is modeled by Python generators. Producer and consumer
will thus run independently, and we will monitor their operation through some print state-
ments:

q = queue()

def Producer(q):
yield delay(120)
for i in range(5):

print "%s: PUT item %s" % (now(), i)
q.put(i)
yield delay(max(5, 45 - 10*i))

def Consumer(q):
yield delay(100)
while 1:

print "%s: TRY to get item" % now()
yield q.get()
print "%s: GOT item %s" % (now(), q.item)
yield delay(30)

def main():
P = Producer(q)
C = Consumer(q)
return P, C

(continues on next page)
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sim = Simulation(main())
sim.run()

Note that the generator method get is called in a yield statement in the Consumer function.
The new generator will take over from Consumer, until it is done. Running this test bench
produces the following output:

% python queue.py
100: TRY to get item
120: PUT item 0
120: GOT item 0
150: TRY to get item
165: PUT item 1
165: GOT item 1
195: TRY to get item
200: PUT item 2
200: GOT item 2
225: PUT item 3
230: TRY to get item
230: GOT item 3
240: PUT item 4
260: TRY to get item
260: GOT item 4
290: TRY to get item
StopSimulation: No more events
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CHAPTER 8

Unit testing

8.1 Introduction

Many aspects in the design flow of modern digital hardware design can be viewed as a special
kind of software development. From that viewpoint, it is a natural question whether advances
in software design techniques can not also be applied to hardware design.

One software design approach that deserves attention is Extreme Programming (XP). It is a
fascinating set of techniques and guidelines that often seems to go against the conventional
wisdom. On other occasions, XP just seems to emphasize the common sense, which doesn’t
always coincide with common practice. For example, XP stresses the importance of normal
workweeks, if we are to have the fresh mind needed for good software development.

It is not my intention nor qualification to present a tutorial on Extreme Programming. Instead,
in this section I will highlight one XP concept which I think is very relevant to hardware design:
the importance and methodology of unit testing.

8.2 The importance of unit tests

Unit testing is one of the corner stones of Extreme Programming. Other XP concepts, such
as collective ownership of code and continuous refinement, are only possible by having unit
tests. Moreover, XP emphasizes that writing unit tests should be automated, that they should
test everything in every class, and that they should run perfectly all the time.

I believe that these concepts apply directly to hardware design. In addition, unit tests are a way
to manage simulation time. For example, a state machine that runs very slowly on infrequent
events may be impossible to verify at the system level, even on the fastest simulator. On the
other hand, it may be easy to verify it exhaustively in a unit test, even on the slowest simulator.

It is clear that unit tests have compelling advantages. On the other hand, if we need to test
everything, we have to write lots of unit tests. So it should be easy and pleasant to create,
manage and run them. Therefore, XP emphasizes the need for a unit test framework that
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supports these tasks. In this chapter, we will explore the use of the unittest module from
the standard Python library for creating unit tests for hardware designs.

8.3 Unit test development

In this section, we will informally explore the application of unit test techniques to hardware
design. We will do so by a (small) example: testing a binary to Gray encoder as introduced in
section Bit indexing.

8.3.1 Defining the requirements

We start by defining the requirements. For a Gray encoder, we want to the output to comply
with Gray code characteristics. Let’s define a code as a list of codewords, where a codeword is a
bit string. A code of order n has 2**n codewords.

A well-known characteristic is the one that Gray codes are all about:

Consecutive codewords in a Gray code should differ in a single bit.

Is this sufficient? Not quite: suppose for example that an implementation returns the lsb of
each binary input. This would comply with the requirement, but is obviously not what we
want. Also, we don’t want the bit width of Gray codewords to exceed the bit width of the
binary codewords.

Each codeword in a Gray code of order n must occur exactly once in the binary code of the
same order.

With the requirements written down we can proceed.

8.3.2 Writing the test first

A fascinating guideline in the XP world is to write the unit test first. That is, before imple-
menting something, first write the test that will verify it. This seems to go against our natural
inclination, and certainly against common practices. Many engineers like to implement first
and think about verification afterwards.

But if you think about it, it makes a lot of sense to deal with verification first. Verification is
about the requirements only — so your thoughts are not yet cluttered with implementation
details. The unit tests are an executable description of the requirements, so they will be better
understood and it will be very clear what needs to be done. Consequently, the implementa-
tion should go smoother. Perhaps most importantly, the test is available when you are done
implementing, and can be run anytime by anybody to verify changes.

Python has a standard unittest module that facilitates writing, managing and running unit
tests. With unittest, a test case is written by creating a class that inherits from unittest.
TestCase. Individual tests are created by methods of that class: all method names that start
with test are considered to be tests of the test case.

We will define a test case for the Gray code properties, and then write a test for each of the
requirements. The outline of the test case class is as follows:
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import unittest

class TestGrayCodeProperties(unittest.TestCase):

def testSingleBitChange(self):
"""Check that only one bit changes in successive codewords."""
....

def testUniqueCodeWords(self):
"""Check that all codewords occur exactly once."""
....

Each method will be a small test bench that tests a single requirement. To write the tests, we
don’t need an implementation of the Gray encoder, but we do need the interface of the design.
We can specify this by a dummy implementation, as follows:

from myhdl import block

@block
def bin2gray(B, G):

# DUMMY PLACEHOLDER
""" Gray encoder.

B -- binary input
G -- Gray encoded output
"""
pass

For the first requirement, we will test all consecutive input numbers, and compare the current
output with the previous one For each input, we check that the difference is exactly a single
bit. For the second requirement, we will test all input numbers and put the result in a list. The
requirement implies that if we sort the result list, we should get a range of numbers. For both
requirements, we will test all Gray codes up to a certain order MAX_WIDTH. The test code looks
as follows:

import unittest

from myhdl import Simulation, Signal, delay, intbv, bin

from bin2gray import bin2gray

MAX_WIDTH = 11

class TestGrayCodeProperties(unittest.TestCase):

def testSingleBitChange(self):
"""Check that only one bit changes in successive codewords."""

def test(B, G):
w = len(B)
G_Z = Signal(intbv(0)[w:])
B.next = intbv(0)
yield delay(10)
for i in range(1, 2**w):

(continues on next page)
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G_Z.next = G
B.next = intbv(i)
yield delay(10)
diffcode = bin(G ^ G_Z)
self.assertEqual(diffcode.count('1'), 1)

self.runTests(test)

def testUniqueCodeWords(self):
"""Check that all codewords occur exactly once."""

def test(B, G):
w = len(B)
actual = []
for i in range(2**w):

B.next = intbv(i)
yield delay(10)
actual.append(int(G))

actual.sort()
expected = list(range(2**w))
self.assertEqual(actual, expected)

self.runTests(test)

def runTests(self, test):
"""Helper method to run the actual tests."""
for w in range(1, MAX_WIDTH):

B = Signal(intbv(0)[w:])
G = Signal(intbv(0)[w:])
dut = bin2gray(B, G)
check = test(B, G)
sim = Simulation(dut, check)
sim.run(quiet=1)

if __name__ == '__main__':
unittest.main(verbosity=2)

Note how the actual check is performed by a self.assertEqual method, defined by the
unittest.TestCase class. Also, we have factored out running the tests for all Gray codes
in a separate method runTests.

8.3.3 Test-driven implementation

With the test written, we begin with the implementation. For illustration purposes, we will
intentionally write some incorrect implementations to see how the test behaves.

The easiest way to run tests defined with the unittest framework, is to put a call to its main
method at the end of the test module:

unittest.main()

Let’s run the test using the dummy Gray encoder shown earlier:
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% python test_gray_properties.py
testSingleBitChange (__main__.TestGrayCodeProperties)
Check that only one bit changes in successive codewords. ... ERROR
testUniqueCodeWords (__main__.TestGrayCodeProperties)
Check that all codewords occur exactly once. ... ERROR

As expected, this fails completely. Let us try an incorrect implementation, that puts the lsb of
in the input on the output:

from myhdl import block, always_comb

@block
def bin2gray(B, G):

# INCORRECT IMPLEMENTATION
""" Gray encoder.

B -- binary input
G -- Gray encoded output
"""

@always_comb
def logic():

G.next = B[0]

return logic

Running the test produces:

python test_gray_properties.py
testSingleBitChange (__main__.TestGrayCodeProperties)
Check that only one bit changes in successive codewords. ... ok
testUniqueCodeWords (__main__.TestGrayCodeProperties)
Check that all codewords occur exactly once. ... FAIL

======================================================================
FAIL: testUniqueCodeWords (__main__.TestGrayCodeProperties)
Check that all codewords occur exactly once.
----------------------------------------------------------------------
Traceback (most recent call last):

File "test_gray_properties.py", line 42, in testUniqueCodeWords
self.runTests(test)

File "test_gray_properties.py", line 53, in runTests
sim.run(quiet=1)

File "/home/jand/dev/myhdl/myhdl/_Simulation.py", line 154, in run
waiter.next(waiters, actives, exc)

File "/home/jand/dev/myhdl/myhdl/_Waiter.py", line 127, in next
clause = next(self.generator)

File "test_gray_properties.py", line 40, in test
self.assertEqual(actual, expected)

AssertionError: Lists differ: [0, 0, 1, 1] != [0, 1, 2, 3]

First differing element 1:
0
1

- [0, 0, 1, 1]

(continues on next page)
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+ [0, 1, 2, 3]

----------------------------------------------------------------------
Ran 2 tests in 0.083s

FAILED (failures=1)

Now the test passes the first requirement, as expected, but fails the second one. After the test
feedback, a full traceback is shown that can help to debug the test output.

Finally, we use a correct implementation:

from myhdl import block, always_comb

@block
def bin2gray(B, G):

""" Gray encoder.

B -- binary input
G -- Gray encoded output
"""

@always_comb
def logic():

G.next = (B>>1) ^ B

return logic

Now the tests pass:

$ python test_gray_properties.py
testSingleBitChange (__main__.TestGrayCodeProperties)
Check that only one bit changes in successive codewords. ... ok
testUniqueCodeWords (__main__.TestGrayCodeProperties)
Check that all codewords occur exactly once. ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.199s

OK

8.3.4 Additional requirements

In the previous section, we concentrated on the general requirements of a Gray code. It is
possible to specify these without specifying the actual code. It is easy to see that there are
several codes that satisfy these requirements. In good XP style, we only tested the requirements
and nothing more.

It may be that more control is needed. For example, the requirement may be for a particular
code, instead of compliance with general properties. As an illustration, we will show how to
test for the original Gray code, which is one specific instance that satisfies the requirements of
the previous section. In this particular case, this test will actually be easier than the previous
one.
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We denote the original Gray code of order n as Ln. Some examples:

L1 = ['0', '1']
L2 = ['00', '01', '11', '10']
L3 = ['000', '001', '011', '010', '110', '111', '101', 100']

It is possible to specify these codes by a recursive algorithm, as follows:

1. L1 = [‘0’, ‘1’]

2. Ln+1 can be obtained from Ln as follows. Create a new code Ln0 by prefixing all code-
words of Ln with ‘0’. Create another new code Ln1 by prefixing all codewords of Ln with
‘1’, and reversing their order. Ln+1 is the concatenation of Ln0 and Ln1.

Python is well-known for its elegant algorithmic descriptions, and this is a good example. We
can write the algorithm in Python as follows:

def nextLn(Ln):
""" Return Gray code Ln+1, given Ln. """
Ln0 = ['0' + codeword for codeword in Ln]
Ln1 = ['1' + codeword for codeword in Ln]
Ln1.reverse()
return Ln0 + Ln1

The code ['0' + codeword for ...] is called a list comprehension. It is a concise way to
describe lists built by short computations in a for loop.

The requirement is now that the output code matches the expected code Ln. We use the
nextLn function to compute the expected result. The new test case code is as follows:

import unittest

from myhdl import Simulation, Signal, delay, intbv, bin

from bin2gray import bin2gray
from next_gray_code import nextLn

MAX_WIDTH = 11

class TestOriginalGrayCode(unittest.TestCase):

def testOriginalGrayCode(self):
"""Check that the code is an original Gray code."""

Rn = []

def stimulus(B, G, n):
for i in range(2**n):

B.next = intbv(i)
yield delay(10)
Rn.append(bin(G, width=n))

Ln = ['0', '1'] # n == 1
for w in range(2, MAX_WIDTH):

Ln = nextLn(Ln)
del Rn[:]
B = Signal(intbv(0)[w:])

(continues on next page)
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G = Signal(intbv(0)[w:])
dut = bin2gray(B, G)
stim = stimulus(B, G, w)
sim = Simulation(dut, stim)
sim.run(quiet=1)
self.assertEqual(Ln, Rn)

if __name__ == '__main__':
unittest.main(verbosity=2)

As it happens, our implementation is apparently an original Gray code:

$ python test_gray_original.py
testOriginalGrayCode (__main__.TestOriginalGrayCode)
Check that the code is an original Gray code. ... ok

----------------------------------------------------------------------
Ran 1 test in 0.100s

OK
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Co-simulation with Verilog

9.1 Introduction

One of the most exciting possibilities of MyHDLis to use it as a hardware verification language
(HVL). A HVL is a language used to write test benches and verification environments, and to
control simulations.

Nowadays, it is generally acknowledged that HVLs should be equipped with modern soft-
ware techniques, such as object orientation. The reason is that verification it the most complex
and time-consuming task of the design process. Consequently, every useful technique is wel-
come. Moreover, test benches are not required to be implementable. Therefore, unlike with
synthesizable code, there are no constraints on creativity.

Technically, verification of a design implemented in another language requires co-simulation.
MyHDL is enabled for co-simulation with any HDL simulator that has a procedural language
interface (PLI). The MyHDLside is designed to be independent of a particular simulator, On
the other hand, for each HDL simulator a specific PLI module will have to be written in C.
Currently, the MyHDL release contains a PLI module for two Verilog simulators: Icarus and
Cver.

9.2 The HDL side

To introduce co-simulation, we will continue to use the Gray encoder example from the previ-
ous chapters. Suppose that we want to synthesize it and write it in Verilog for that purpose.
Clearly we would like to reuse our unit test verification environment.

To start, let’s recall how the Gray encoder in MyHDL looks like:

from myhdl import block, always_comb

@block
def bin2gray(B, G):

(continues on next page)
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""" Gray encoder.

B -- binary input
G -- Gray encoded output
"""

@always_comb
def logic():

G.next = (B>>1) ^ B

return logic

To show the co-simulation flow, we don’t need the Verilog implementation yet, but only the
interface. Our Gray encoder in Verilog would have the following interface:

module bin2gray(B, G);

parameter width = 8;
input [width-1:0] B;
output [width-1:0] G;
....

To write a test bench, one creates a new module that instantiates the design under test (DUT).
The test bench declares nets and regs (or signals in VHDL) that are attached to the DUT, and to
stimulus generators and response checkers. In an all-HDL flow, the generators and checkers
are written in the HDL itself, but we will want to write them in MyHDL. To make the connec-
tion, we need to declare which regs & nets are driven and read by the MyHDLsimulator. For
our example, this is done as follows:

module dut_bin2gray;

reg [`width-1:0] B;
wire [`width-1:0] G;

initial begin
$from_myhdl(B);
$to_myhdl(G);

end

bin2gray dut (.B(B), .G(G));
defparam dut.width = `width;

endmodule

The $from_myhdl task call declares which regs are driven by MyHDL, and the $to_myhdl
task call which regs & nets are read by it. These tasks take an arbitrary number of arguments.
They are defined in a PLI module written in C and made available in a simulator-dependent
manner. In Icarus Verilog, the tasks are defined in a myhdl.vpi module that is compiled from
C source code.
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9.3 The MyHDL side

MyHDL supports co-simulation by a Cosimulation object. A Cosimulation object must
know how to run a HDL simulation. Therefore, the first argument to its constructor is a com-
mand string to execute a simulation.

The way to generate and run an simulation executable is simulator dependent. For example, in
Icarus Verilog, a simulation executable for our example can be obtained obtained by running
the iverilog compiler as follows:

% iverilog -o bin2gray -Dwidth=4 bin2gray.v dut_bin2gray.v

This generates a bin2gray executable for a parameter width of 4, by compiling the contribut-
ing Verilog files.

The simulation itself is run by the vvp command:

% vvp -m ./myhdl.vpi bin2gray

This runs the bin2gray simulation, and specifies to use the myhdl.vpi PLI module present
in the current directory. (This is just a command line usage example; actually simulating with
the myhdl.vpi module is only meaningful from a Cosimulation object.)

We can use a Cosimulation object to provide a HDL version of a design to the MyHDL
simulator. Instead of a generator function, we write a function that returns a Cosimulation
object. For our example and the Icarus Verilog simulator, this is done as follows:

import os

from myhdl import Cosimulation

cmd = "iverilog -o bin2gray.o -Dwidth=%s " + \
"../../test/verilog/bin2gray.v " + \
"../../test/verilog/dut_bin2gray.v "

def bin2gray(B, G):
width = len(B)
os.system(cmd % width)
return Cosimulation("vvp -m ../myhdl.vpi bin2gray.o", B=B, G=G)

After the executable command argument, the Cosimulation constructor takes an arbitrary
number of keyword arguments. Those arguments make the link between MyHDL Signals and
HDL nets, regs, or signals, by named association. The keyword is the name of an argument in
a $to_myhdl or $from_myhdl call; the argument is a MyHDL Signal.

With all this in place, we can now use the existing unit test to verify the Verilog implementa-
tion. Note that we kept the same name and parameters for the the bin2gray function: all we
need to do is to provide this alternative definition to the existing unit test.

Let’s try it on the Verilog design:

module bin2gray(B, G);

parameter width = 8;
input [width-1:0] B;
output [width-1:0] G;

(continues on next page)
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assign G = (B >> 1) ^ B;

endmodule // bin2gray

When we run our unit tests, we get:

% python test_gray.py
testSingleBitChange (test_gray_properties.TestGrayCodeProperties)
Check that only one bit changes in successive codewords. ... ok
testUniqueCodeWords (test_gray_properties.TestGrayCodeProperties)
Check that all codewords occur exactly once. ... ok
testOriginalGrayCode (test_gray_original.TestOriginalGrayCode)
Check that the code is an original Gray code. ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.706s

OK

9.4 Restrictions

In the ideal case, it should be possible to simulate any HDL description seamlessly with My-
HDL. Moreover the communicating signals at each side should act transparently as a single
one, enabling fully race free operation.

For various reasons, it may not be possible or desirable to achieve full generality. As anyone
that has developed applications with the Verilog PLI can testify, the restrictions in a particular
simulator, and the differences over various simulators, can be quite frustrating. Moreover,
full generality may require a disproportionate amount of development work compared to a
slightly less general solution that may be sufficient for the target application.

Consequently, I have tried to achieve a solution which is simple enough so that one can rea-
sonably expect that any PLI-enabled simulator can support it, and that is relatively easy to
verify and maintain. At the same time, the solution is sufficiently general to cover the target
application space.

The result is a compromise that places certain restrictions on the HDL code. In this section,
these restrictions are presented.

9.4.1 Only passive HDL can be co-simulated

The most important restriction of the MyHDL co-simulation solution is that only “passive”
HDL can be co-simulated. This means that the HDL code should not contain any statements
with time delays. In other words, the MyHDL simulator should be the master of time; in
particular, any clock signal should be generated at the MyHDL side.

At first this may seem like an important restriction, but if one considers the target application
for co-simulation, it probably isn’t.

MyHDL supports co-simulation so that test benches for HDL designs can be written in Python.
Let’s consider the nature of the target HDL designs. For high-level, behavioral models that are
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not intended for implementation, it should come as no surprise that I would recommend to
write them in MyHDL directly; that is one of the goals of the MyHDL effort. Likewise, gate
level designs with annotated timing are not the target application: static timing analysis is a
much better verification method for such designs.

Rather, the targeted HDL designs are naturally models that are intended for implementation,
most likely through synthesis. As time delays are meaningless in synthesizable code, the re-
striction is compatible with the target application.

9.4.2 Race sensitivity issues

In a typical RTL code, some events cause other events to occur in the same time step. For
example, when a clock signal triggers some signals may change in the same time step. For race-
free operation, an HDL must differentiate between such events within a time step. This is done
by the concept of “delta” cycles. In a fully general, race free co-simulation, the co-simulators
would communicate at the level of delta cycles. However, in MyHDL co-simulation, this is not
entirely the case.

Delta cycles from the MyHDL simulator toward the HDL co-simulator are preserved. How-
ever, in the opposite direction, they are not. The signals changes are only returned to the
MyHDL simulator after all delta cycles have been performed in the HDL co-simulator.

What does this mean? Let’s start with the good news. As explained in the previous section, the
concept behind MyHDL co-simulation implies that clocks are generated at the MyHDL side.
When using a MyHDL clock and its corresponding HDL signal directly as a clock, co-simulation is race
free. In other words, the case that most closely reflects the MyHDL co-simulation approach, is
race free.

The situation is different when you want to use a signal driven by the HDL (and the corre-
sponding MyHDL signal) as a clock. Communication triggered by such a clock is not race free.
The solution is to treat such an interface as a chip interface instead of an RTL interface. For
example, when data is triggered at positive clock edges, it can safely be sampled at negative
clock edges. Alternatively, the MyHDL data signals can be declared with a delay value, so that
they are guaranteed to change after the clock edge.

9.5 Implementation notes

This section requires some knowledge of PLI terminology.

Enabling a simulator for co-simulation requires a PLI module written in C. In Verilog, the PLI
is part of the “standard”. However, different simulators implement different versions and
portions of the standard. Worse yet, the behavior of certain PLI callbacks is not defined on
some essential points. As a result, one should plan to write or at least customize a specific PLI
module for any simulator. The release contains a PLI module for the open source Icarus and
Cver simulators.

This section documents the current approach and status of the PLI module implementation
and some reflections on future implementations.

9.5.1 Icarus Verilog
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Delta cycle implementation

To make co-simulation work, a specific type of PLI callback is needed. The callback should
be run when all pending events have been processed, while allowing the creation of new
events in the current time step (e.g. by the MyHDL simulator). In some Verilog simulators, the
cbReadWriteSync callback does exactly that. However, in others, including Icarus, it does
not. The callback’s behavior is not fully standardized; some simulators run the callback before
non- blocking assignment events have been processed.

Consequently, I had to look for a workaround. One half of the solution is to use the
cbReadOnlySync callback. This callback runs after all pending events have been processed.
However, it does not permit one to create new events in the current time step. The second half
of the solution is to map MyHDL delta cycles onto real Verilog time steps. Note that fortu-
nately I had some freedom here because of the restriction that only passive HDL code can be
co-simulated.

I chose to make the time granularity in the Verilog simulator a 1000 times finer than in the My-
HDL simulator. For each MyHDL time step, 1000 Verilog time steps are available for MyHDL
delta cycles. In practice, only a few delta cycles per time step should be needed. Exceeding
this limit almost certainly indicates a design error; the limit is checked at run-time. The factor
1000 also makes it easy to distinguish “real” time from delta cycle time when printing out the
Verilog time.

Passive Verilog check

As explained before, co-simulated Verilog should not contain delay statements. Ideally, there
should be a run-time check to flag non-compliant code. However, there is currently no such
check in the Icarus module.

The check can be written using the cbNextSimTime VPI callback in Verilog. However, Icarus
0.7 doesn’t support this callback. In the meantime, support for it has been added to the Icarus
development branch. When Icarus 0.8 is released, a check will be added.

In the mean time, just don’t do this. It may appear to “work” but it really won’t as events will
be missed over the co-simulation interface.

9.5.2 Cver

MyHDL co-simulation is supported with the open source Verilog simulator Cver. The PLI
module is based on the one for Icarus and basically has the same functionality. Only some
cosmetic modifications were required.

9.5.3 Other Verilog simulators

The Icarus module is written with VPI calls, which are provided by the most recent generation
of the Verilog PLI. Some simulators may only support TF/ACC calls, requiring a complete
redesign of the interface module.

If the simulator supports VPI, the Icarus module should be reusable to a large extent. How-
ever, it may be possible to improve on it. The workaround to support delta cycles de-
scribed in Section Delta cycle implementation may not be necessary. In some simulators, the
cbReadWriteSync callback occurs after all events (including non-blocking assignments)
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have been processed. In that case, the functionality can be supported without a finer time
granularity in the Verilog simulator.

There are also Verilog standardization efforts underway to resolve the ambiguity of the
cbReadWriteSync callback. The solution will be to introduce new, well defined callbacks.
From reading some proposals, I conclude that the cbEndOfSimTime callback would provide
the required functionality.

The MyHDL project currently has no access to commercial Verilog simulators, so progress in
co-simulation support depends on external interest and participation. Users have reported
that they are using MyHDL co-simulation with the simulators from Aldec and Modelsim.

9.5.4 Interrupted system calls

The PLI module uses read and write system calls to communicate between the co-
simulators. The implementation assumes that these calls are restarted automatically by the
operating system when interrupted. This is apparently what happens on the Linux box on
which MyHDL is developed.

It is known how non-restarted interrupted system calls should be handled, but currently such
code cannot be tested on the MyHDL development platform. Also, it is not clear whether
this is still a relevant issue with modern operating systems. Therefore, this issue has not been
addressed at this moment. However, assertions have been included that should trigger when
this situation occurs.

Whenever an assertion fires in the PLI module, please report it. The same holds for Python
exceptions that cannot be easily explained.

9.5.5 What about VHDL?

It would be nice to have an interface to VHDL simulators such as the Modelsim VHDL simu-
lator. Let us summarize the requirements to accomplish that:

• We need a procedural interface to the internals of the simulator.

• The procedural interface should be a widely used industry standard so that we can reuse
the work in several simulators.

• MyHDL is an open-source project and therefore there should be also be an open-source
simulator that implements the procedural interface.

vpi for Verilog matches these requirements. It is a widely used standard and is supported by
the open-source Verilog simulators Icarus and cver.

However, for VHDL the situation is different. While there exists a standard called vhpi, it
much less popular than vpi. Also, to our knowledge there is only one credible open source
VHDL simulator (GHDL) and it is unclear whether it has vhpi capabilities that are powerful
enough for MyHDL’s purposes.

Consequently, the development of co-simulation for VHDL is currently on hold. For some
applications, there is an alternative: see Conversion of test benches.
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CHAPTER 10

Conversion to Verilog and VHDL

10.1 Introduction

Subject to some limitations, MyHDL supports the automatic conversion of MyHDL code to
Verilog or VHDL code. This feature provides a path from MyHDL into a standard Verilog or
VHDL based design environment.

This chapter describes the concepts of conversion. Concrete examples can be found in the
companion chapter Conversion examples.

10.2 Solution description

To be convertible, the hardware description should satisfy certain restrictions, defined as the
convertible subset. This is described in detail in The convertible subset.

A convertible design can be converted to an equivalent model in Verilog or VHDL, using the
function toVerilog or toVHDL from the MyHDL library.

When the design is intended for implementation a third-party synthesis tool is used to compile
the Verilog or VHDL model into an implementation for an ASIC or FPGA. With this step, there
is an automated path from a hardware description in Python to an FPGA or ASIC implemen-
tation.

The conversion does not start from source files, but from an instantiated design that has been
elaborated by the Python interpreter. The converter uses the Python profiler to track the in-
terpreter’s operation and to infer the design structure and name spaces. It then selectively
compiles pieces of source code for additional analysis and for conversion.
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10.3 Features

Conversion after elaboration Elaboration refers to the initial processing of a hardware descrip-
tion to achieve a representation of a design instance that is ready for simulation or syn-
thesis. In particular, structural parameters and constructs are processed in this step. In
MyHDL, the Python interpreter itself is used for elaboration. A Simulation object is
constructed with elaborated design instances as arguments. Likewise, conversion works
on an elaborated design instance. The Python interpreter is thus used as much as possi-
ble.

Arbitrarily complex structure As the conversion works on an elaborated design instance, any
modeling constraints only apply to the leaf elements of the design structure, that is, the
co-operating generators. In other words, there are no restrictions on the description of
the design structure: Python’s full power can be used for that purpose. Also, the design
hierarchy can be arbitrarily deep.

Generator are mapped to Verilog or VHDL constructs The converter analyzes the code of
each generator and maps it to equivalent constructs in the target HDL. For Verilog, it
will map generators to always blocks, continuous assignments or initial blocks. For
VHDL, it will map them to process statements or concurrent signal assignments.

The module ports are inferred from signal usage In MyHDL, the input or output direction
of ports is not explicitly declared. The converter investigates signal usage in the design
hierarchy to infer whether a signal is used as input, output, or as an internal signal.

Interfaces are convertible An interface: an object that has a number of Signal objects as its
attributes. The converter supports this by name expansion and mangling.

Function calls are mapped to Verilog or VHDL subprograms The converter analyzes func-
tion calls and function code. Each function is mapped to an appropriate subprogram
in the target HDL: a function or task in Verilog, and a function or procedure in VHDL. In
order to support the full power of Python functions, a unique subprogram is generated
per Python function call.

If-then-else structures may be mapped to case statements Python does not provide a case
statement. However, the converter recognizes if-then-else structures in which a variable
is sequentially compared to items of an enumeration type, and maps such a structure to
a Verilog or VHDL case statement with the appropriate synthesis attributes.

Choice of encoding schemes for enumeration types The enum function in MyHDL returns
an enumeration type. This function takes an additional parameter encoding that specifies
the desired encoding in the implementation: binary, one hot, or one cold. The converter
generates the appropriate code for the specified encoding.

RAM memory Certain synthesis tools can map Verilog memories or VHDL arrays to RAM
structures. To support this interesting feature, the converter maps lists of signals to Ver-
ilog memories or VHDL arrays.

ROM memory Some synthesis tools can infer a ROM from a case statement. The converter
does the expansion into a case statement automatically, based on a higher level descrip-
tion. The ROM access is described in a single line, by indexing into a tuple of integers.

Signed arithmetic In MyHDL, working with negative numbers is trivial: one just uses an
intbv object with an appropriate constraint on its values. In contrast, both Verilog and
VHDL make a difference between an unsigned and a signed representation. To work
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with negative values, the user has to declare a signed variable explicitly. But when signed
and unsigned operands are mixed in an expression, things may become tricky.

In Verilog, when signed and unsigned operands are mixed, all operands are interpreted
as unsigned. Obviously, this leads to unexpected results. The designer will have to add
sign extensions and type casts to solve this.

In VHDL, mixing signed and unsigned will generally not work. The designer will have
to match the operands manually by adding resizings and type casts.

In MyHDL, these issues don’t exist because intbv objects simply work as (constrained)
integers. Moreover, the converter automates the cumbersome tasks that are required
in Verilog and VHDL. It uses signed or unsigned types based on the value constraints
of the intbv objects, and automatically performs the required sign extensions, resizings,
and type casts.

User-defined code If desired, the user can bypass the conversion process and describe user-
defined code to be inserted instead.

10.4 The convertible subset

10.4.1 Introduction

Unsurprisingly, not all MyHDL code can be converted. Although the restrictions are signif-
icant, the convertible subset is much broader than the RTL synthesis subset which is an in-
dustry standard. In other words, MyHDL code written according to the RTL synthesis rules,
should always be convertible. However, it is also possible to write convertible code for non-
synthesizable models or test benches.

The converter attempts to issue clear error messages when it encounters a construct that cannot
be converted.

Recall that any restrictions only apply to the design after elaboration. In practice, this means
that they apply only to the code of the generators, that are the leaf functional blocks in a My-
HDL design.

10.4.2 Coding style

A natural restriction on convertible code is that it should be written in MyHDL style: cooper-
ating generators, communicating through signals, and with sensitivity specify resume condi-
tions.

For pure modeling, it doesn’t matter how generators are created. However, in convert-
ible code they should be created using one of the MyHDL decorators: instance, always,
always_seq , or always_comb.

10.4.3 Supported types

The most important restriction regards object types. Only a limited amount of types can be
converted. Python int and long objects are mapped to Verilog or VHDL integers. All other
supported types need to have a defined bit width. The supported types are the Python bool
type, the MyHDL intbv type, and MyHDL enumeration types returned by function enum.
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intbv objects must be constructed so that a bit width can be inferred. This can be done by
specifying minimum and maximum values, e.g. as follows:

index = intbv(0, min=MIN, max=MAX)

The Verilog converter supports intbv objects that can take negative values.

Alternatively, a slice can be taken from an intbv object as follows:

index = intbv(0)[N:]

Such as slice returns a new intbv object, with minimum value 0 , and maximum value 2**N.

In addition to the scalar types described above, the converter also supports a number of tuple
and list based types. The mapping from MyHDL types is summarized in the following table.

MyHDL type VHDL type Notes Verilog type Notes
int integer integer
bool std_logic (1) reg
intbv with min >= 0 unsigned (2) reg
intbv with min < 0 signed (2) reg signed
enum dedicated enumeration

type
reg

tuple of int mapped to case state-
ment

(3) mapped to case state-
ment

(3)

list of bool array of
std_logic

reg (5)

list of intbv with min
>= 0

array of unsigned (4) reg (4)(5)

list of intbv with min
< 0

array of signed (4) reg signed (4)(5)

Notes:

(1) The VHDL std_logic type is defined in the standard VHDL package IEEE.
std_logic_1164.

(2) The VHDL unsigned and signed types used are those from the standard VHDL pack-
ages IEEE.numeric_std.

(3) A MyHDL tuple of int is used for ROM inference, and can only be used in a very
specific way: an indexing operation into the tuple should be the rhs of an assignment.

(4) All list members should have identical value constraints.

(5) Lists are mapped to Verilog memories.

The table as presented applies to MyHDL variables. The converter also supports MyHDL
signals that use bool, intbv or enum objects as their underlying type. For VHDL, these are
mapped to VHDL signals with an underlying type as specified in the table above. Verilog
doesn’t have the signal concept. For Verilog, a MyHDL signal is mapped to a Verilog reg as
in the table above, or to a Verilog wire, depending on the signal usage.

The converter supports MyHDL list of signals provided the underlying signal type is either
bool or intbv. They may be mapped to a VHDL signal with a VHDL type as specified
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in the table, or to a Verilog memory. However, list of signals are not always mapped to a
corresponding VHDL or Verilog object. See Conversion of lists of signals for more info.

10.4.4 Supported statements

The following is a list of the statements that are supported by the Verilog converter, possibly
qualified with restrictions or usage notes.

assert An assert statement in Python looks as follow:

assert test_expression

It can be converted provided test_expression is convertible.

break

continue

def

for The only supported iteration scheme is iterating through sequences of integers returned
by built-in function range or MyHDL function downrange. The optional else clause
is not supported.

if if, elif, and else clauses are fully supported.

pass

print

A print statement with multiple arguments:

print arg1, arg2, ...

is supported. However, there are restrictions on the arguments. First, they should
be of one of the following forms:

arg
formatstring % arg
formatstring % (arg1, arg2, ...)

where arg is a bool, int, intbv, enum, or a Signal of these types.

The formatstring contains ordinary characters and conversion specifiers as in
Python. However, the only supported conversion specifiers are %s and %d. Justifi-
cation and width specification are thus not supported.

Printing without a newline:

print arg1 ,

is not supported.

raise This statement is mapped to statements that end the simulation with an error message.

return
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yield A yield expression is used to specify a sensitivity list. The yielded expression can be a
Signal, a signal edge as specified by MyHDL functions Signal.posedge or Signal.
negedge, or a tuple of signals and edge specifications. It can also be a delay object.

while The optional else clause is not supported.

10.4.5 Supported built-in functions

The following is a list of the built-in functions that are supported by the converter.

bool This function can be used to typecast an object explicitly to its boolean interpretation.

len For Signal and intbv objects, function len returns the bit width.

int This function can be used to typecast an object explicitly to its integer interpretation.

10.4.6 Docstrings

The converter propagates comments under the form of Python docstrings.

Docstrings are typically used in Python to document certain objects in a standard way. Such
“official” docstrings are put into the converted output at appropriate locations. The converter
supports official docstrings for the top level module and for generators.

Within generators, “nonofficial” docstrings are propagated also. These are strings (triple
quoted by convention) that can occur anywhere between statements.

Regular Python comments are ignored by the Python parser, and they are not present in the
parse tree. Therefore, these are not propagated. With docstrings, you have an elegant way to
specify which comments should be propagated and which not.

10.5 Conversion of lists of signals

Lists of signals are useful for many purposes. For example, they make it easy to create a
repetitive structure. Another application is the description of memory behavior.

The converter output is non-hierarchical. That implies that all signals are declared at the top-
level in VHDL or Verilog (as VHDL signals, or Verilog regs and wires.) However, some signals
that are a list member at some level in the MyHDL design hierarchy may be used as a plain
signal at a lower level. For such signals, a choice has to be made whether to declare a Verilog
memory or VHDL array, or a number of plain signal names.

If possible, plain signal declarations are preferred, because Verilog memories and arrays have
some restrictions in usage and tool support. This is possible if the list syntax is strictly used
outside generator code, for example when lists of signals are used to describe structure.

Conversely, when list syntax is used in some generator, then a Verilog memory or VHDL array
will be declared. The typical example is the description of RAM memories.
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10.6 Conversion of Interfaces

Complex designs often have many signals that are passed to different levels of hierarchy. Typ-
ically, many signals logically belong together. This can be modelled by an interface: an object
that has a number of Signal objects as its attributes. Grouping signals into an interface sim-
plifies the code, improves efficiency, and reduces errors.

The converter supports interface using hierarchical name expansion and name mangling.

10.7 Assignment issues

10.7.1 Name assignment in Python

Name assignment in Python is a different concept than in many other languages. This point is
very important for effective modeling in Python, and even more so for synthesizable MyHDL
code. Therefore, the issues are discussed here explicitly.

Consider the following name assignments:

a = 4
a = ``a string''
a = False

In many languages, the meaning would be that an existing variable a gets a number of different
values. In Python, such a concept of a variable doesn’t exist. Instead, assignment merely
creates a new binding of a name to a certain object, that replaces any previous binding. So in
the example, the name a is bound a number of different objects in sequence.

The converter has to investigate name assignment and usage in MyHDL code, and to map
names to Verilog or VHDL objects. To achieve that, it tries to infer the type and possibly the
bit width of each expression that is assigned to a name.

Multiple assignments to the same name can be supported if it can be determined that a con-
sistent type and bit width is being used in the assignments. This can be done for boolean
expressions, numeric expressions, and enumeration type literals.

In other cases, a single assignment should be used when an object is created. Subsequent value
changes are then achieved by modification of an existing object. This technique should be used
for Signal and intbv objects.

10.7.2 Signal assignment

Signal assignment in MyHDL is implemented using attribute assignment to attribute next.
Value changes are thus modeled by modification of the existing object. The converter investi-
gates the Signal object to infer the type and bit width of the corresponding Verilog or VHDL
object.

10.7.3 intbv objects

Type intbv is likely to be the workhorse for synthesizable modeling in MyHDL. An intbv
instance behaves like a (mutable) integer whose individual bits can be accessed and modified.
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Also, it is possible to constrain its set of values. In addition to error checking, this makes it
possible to infer a bit width, which is required for implementation.

As noted before, it is not possible to modify value of an intbv object using name assignment.
In the following, we will show how it can be done instead. Consider:

a = intbv(0)[8:]

This is an intbv object with initial value 0 and bit width 8. To change its value to 5, we can
use slice assignment:

a[8:] = 5

The same can be achieved by leaving the bit width unspecified, which has the meaning to
change “all” bits:

a[:] = 5

Often the new value will depend on the old one. For example, to increment an intbv with
the technique above:

a[:] = a + 1

Python also provides augmented assignment operators, which can be used to implement in-
place operations. These are supported on intbv objects and by the converter, so that the
increment can also be done as follows:

a += 1

10.8 Excluding code from conversion

For some tasks, such as debugging, it may be useful to insert arbitrary Python code that should
not be converted.

The converter supports this by ignoring all code that is embedded in a if __debug__ test.
The value of the __debug__ variable is not taken into account.

10.9 User-defined code

MyHDL provides a way to include user-defined code during the conversion process. There are
special function attributes that are understood by the converter but ignored by the simulator.
The attributes are verilog_code for Verilog and vhdl_code for VHDL. They operate like a
special return value. When defined in a MyHDL function, the converter will use their value
instead of the regular return value. Effectively, it will stop converting at that point.

The value of verilog_code or vhdl_code should be a Python template string. A template
string supports $-based substitutions. The $name notation can be used to refer to the variable
names in the context of the string. The converter will substitute the appropriate values in the
string and then insert it instead of the regular converted output.

There is one more issue with user-defined code. Normally, the converter infers inputs, inter-
nal signals, and outputs. It also detects undriven and multiple driven signals. To do this, it
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assumes that signals are not driven by default. It then processes the code to find out which
signals are driven from where.

Proper signal usage inference cannot be done with user-defined code. Without user help, this
will result in warnings or errors during the inference process, or in compilation errors from
invalid code. The user can solve this by setting the driven or read attribute for signals that
are driven or read from the user-defined code. These attributes are False by default. The
allowed “true” values of the driven attribute are True, 'wire' and 'reg'. The latter two
values specifies how the user-defined Verilog code drives the signal in Verilog. To decide which
value to use, consider how the signal should be declared in Verilog after the user-defined code
is inserted.

For an example of user-defined code, see User-defined code.

10.10 Template transformation

Note: This section is only relevant for VHDL.

There is a difference between VHDL and Verilog in the way in which sensitivity to signal edges
is specified. In Verilog, edge specifiers can be used directly in the sensitivity list. In VHDL, this
is not possible: only signals can be used in the sensitivity list. To check for an edge, one uses
the rising_edge() or falling_edge() functions in the code.

MyHDL follows the Verilog scheme to specify edges in the sensitivity list. Consequently, when
mapping such code to VHDL, it needs to be transformed to equivalent VHDL. This is an im-
portant issue because it affects all synthesizable templates that infer sequential logic.

We will illustrate this feature with some examples. This is the MyHDL code for a D flip-flop:

@always(clk.posedge)
def logic():

q.next = d

It is converted to VHDL as follows:

DFF_LOGIC: process (clk) is
begin

if rising_edge(clk) then
q <= d;

end if;
end process DFF_LOGIC;

The converter can handle the more general case. For example, this is MyHDL code for a D
flip-flop with asynchronous set, asynchronous reset, and preference of set over reset:

@always(clk.posedge, set.negedge, rst.negedge)
def logic():

if set == 0:
q.next = 1

elif rst == 0:
q.next = 0

else:
q.next = d
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This is converted to VHDL as follows:

DFFSR_LOGIC: process (clk, set, rst) is
begin

if (set = '0') then
q <= '1';

elsif (rst = '0') then
q <= '0';

elsif rising_edge(clk) then
q <= d;

end if;
end process DFFSR_LOGIC;

All cases with practical utility can be handled in this way. However, there are other cases that
cannot be transformed to equivalent VHDL. The converter will detect those cases and give an
error.

10.11 Conversion output verification by co-simulation

Note: This section is only relevant for Verilog.

To verify the converted Verilog output, co-simulation can be used. To make this task easier,
the converter also generates a test bench that makes it possible to simulate the Verilog design
using the Verilog co-simulation interface. This permits one to verify the Verilog code with the
same test bench used for the MyHDL code.

10.12 Conversion of test benches

After conversion, we obviously want to verify that the VHDL or Verilog code works correctly.
For Verilog, we can use co-simulation as discussed earlier. However, for VHDL, co-simulation
is currently not supported.

An alternative is to convert the test bench itself, so that both test bench and design can be run
in the HDL simulator. Of course, this is not a fully general solution, as there are important
constraints on the kind of code that can be converted. Thus, the question is whether the con-
version restrictions permit one to develop sufficiently complex test benches. In this section, we
present some insights about this.

The most important restrictions regard the types that can be used, as discussed earlier in this
chapter. However, the “convertible subset” is wider than the “synthesis subset”. We will
present a number of non-synthesizable feature that are of interest for test benches.

the while loop while loops can be used for high-level control structures.

the raise statement A raise statement can stop the simulation on an error condition.

delay objects Delay modeling is essential for test benches.

the print statement print statements can be used for simple debugging.

the assert statement. Originally, assert statements were only intended to insert debug-
ging assertions in code. Recently, there is a tendency to use them to write self-checking
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unit tests, controlled by unit test frameworks such as py.test. In particular, they are
a powerful way to write self-checking test benches for MyHDL designs. As assert
statements are convertible, a whole unit test suite in MyHDL can be converted to an
equivalent test suite in Verilog and VHDL.

Additionally, the same techniques as for synthesizable code can be used to master complexity.
In particular, any code outside generators is executed during elaboration, and therefore not
considered in the conversion process. This feature can for example be used for complex cal-
culations that set up constants or expected results. Furthermore, a tuple of ints can be used to
hold a table of values that will be mapped to a case statement in Verilog and VHDL.

10.13 Methodology notes

10.13.1 Simulate first

In the Python philosophy, the run-time rules. The Python compiler doesn’t attempt to detect
a lot of errors beyond syntax errors, which given Python’s ultra-dynamic nature would be an
almost impossible task anyway. To verify a Python program, one should run it, preferably
using unit testing to verify each feature.

The same philosophy should be used when converting a MyHDL description to Verilog: make
sure the simulation runs fine first. Although the converter checks many things and attempts
to issue clear error messages, there is no guarantee that it does a meaningful job unless the
simulation runs fine.

10.13.2 Handling hierarchy

Recall that conversion occurs after elaboration. A consequence is that the converted output is
non-hierarchical. In many cases, this is not an issue. The purpose of conversion is to provide
a path into a traditional design flow by using Verilog and VHDL as a “back-end” format.
Hierarchy is quite relevant to humans, but much less so to tools.

However, in some cases hierarchy is desirable. For example, if you convert a test bench you
may prefer to keep its code separate from the design under test. In other words, conversion
should stop at the design under test instance, and insert an instantiation instead.

There is a workaround to accomplish this with a small amount of additional work. The
workaround is to define user-defined code consisting of an instantiation of the design under
test. As discussed in User-defined code, when the converter sees the hook it will stop converting
and insert the instantiation instead. Of course, you will want to convert the design under test
itself also. Therefore, you should use a flag that controls whether the hook is defined or not
and set it according to the desired conversion.

10.14 Known issues

Verilog and VHDL integers are 32 bit wide Usually, Verilog and VHDL integers are 32 bit
wide. In contrast, Python is moving toward integers with undefined width. Python
int and long variables are mapped to Verilog integers; so for values wider than 32 bit
this mapping is incorrect.
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Synthesis pragmas are specified as Verilog comments. The recommended way to specify
synthesis pragmas in Verilog is through attribute lists. However, the Icarus simulator
doesn’t support them for case statements (to specify parallel_case and full_case
pragmas). Therefore, the old but deprecated method of synthesis pragmas in Verilog
comments is still used.

Inconsistent place of the sensitivity list inferred from always_comb. The semantics of
always_comb, both in Verilog and MyHDL, is to have an implicit sensitivity list at
the end of the code. However, this may not be synthesizable. Therefore, the inferred
sensitivity list is put at the top of the corresponding always block or process. This
may cause inconsistent behavior at the start of the simulation. The workaround is to
create events at time 0.
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Conversion examples

11.1 Introduction

In this chapter, we will demonstrate the conversion process with a number of examples. For the
concepts of MyHDL conversion, read the companion chapter Conversion to Verilog and VHDL.

11.2 A small sequential design

Consider the following MyHDL code for an incrementer block:

from myhdl import block, always_seq

@block
def inc(count, enable, clock, reset):

""" Incrementer with enable.

count -- output
enable -- control input, increment when 1
clock -- clock input
reset -- asynchronous reset input
"""

@always_seq(clock.posedge, reset=reset)
def seq():

if enable:
count.next = count + 1

return seq

This design can be converted to Verilog and VHDL. The first step is to elaborate it, just as we
do for simulation. Then we can use the convert method on the elaborated instance.
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from myhdl import Signal, ResetSignal, modbv

from inc import inc

def convert_inc(hdl):
"""Convert inc block to Verilog or VHDL."""

m = 8

count = Signal(modbv(0)[m:])
enable = Signal(bool(0))
clock = Signal(bool(0))
reset = ResetSignal(0, active=0, isasync=True)

inc_1 = inc(count, enable, clock, reset)

inc_1.convert(hdl=hdl)

convert_inc(hdl='Verilog')
convert_inc(hdl='VHDL')

For flexibility, we wrap the conversion in a convert_inc function. inc_1 is an elaborated
design instance that provides the conversion method.

The conversion to Verilog generates an equivalent Verilog module in file inc.v. The Verilog
code looks as follows:

// File: inc.v
// Generated by MyHDL 1.0dev
// Date: Sun May 22 18:46:37 2016

`timescale 1ns/10ps

module inc (
count,
enable,
clock,
reset

);
// Incrementer with enable.
//
// count -- output
// enable -- control input, increment when 1
// clock -- clock input
// reset -- asynchronous reset input

output [7:0] count;
reg [7:0] count;
input enable;
input clock;
input reset;

(continues on next page)
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(continued from previous page)

always @(posedge clock, negedge reset) begin: INC_SEQ
if (reset == 0) begin

count <= 0;
end
else begin

if (enable) begin
count <= (count + 1);

end
end

end

endmodule

The converter infers a proper Verilog module interface and maps the MyHDL generator to a
Verilog always block.

Similarly, the conversion to VHDL generates a file inc.vhd with the following content:

-- File: inc.vhd
-- Generated by MyHDL 1.0dev
-- Date: Sun May 22 18:46:37 2016

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use std.textio.all;

use work.pck_myhdl_10.all;

entity inc is
port (

count: inout unsigned(7 downto 0);
enable: in std_logic;
clock: in std_logic;
reset: in std_logic

);
end entity inc;
-- Incrementer with enable.
--
-- count -- output
-- enable -- control input, increment when 1
-- clock -- clock input
-- reset -- asynchronous reset input

architecture MyHDL of inc is

begin

INC_SEQ: process (clock, reset) is
begin

(continues on next page)
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if (reset = '0') then
count <= to_unsigned(0, 8);

elsif rising_edge(clock) then
if bool(enable) then

count <= (count + 1);
end if;

end if;
end process INC_SEQ;

end architecture MyHDL;

The MyHDL generator is mapped to a VHDL process in this case.

Note that the VHDL file refers to a VHDL package called pck_myhdl_<version>. This
package contains a number of convenience functions that make the conversion easier.

Note also the use of an inout in the interface. This is not recommended VHDL design practice,
but it is required here to have a valid VHDL design that matches the behavior of the MyHDL
design. As this is only an issue for ports and as the converter output is non-hierarchical, the
issue is not very common and has an easy workaround.

11.3 A small combinatorial design

The second example is a small combinatorial design, more specifically the binary to Gray code
converter from previous chapters:

from myhdl import block, always_comb

@block
def bin2gray(B, G):

""" Gray encoder.

B -- binary input
G -- Gray encoded output
"""

@always_comb
def logic():

G.next = (B>>1) ^ B

return logic

As before, you can create an instance and convert to Verilog and VHDL as follows:

from myhdl import Signal, intbv

from bin2gray import bin2gray

def convert(hdl, width=8):

B = Signal(intbv(0)[width:])
G = Signal(intbv(0)[width:])

(continues on next page)
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inst = bin2gray(B, G)
inst.convert(hdl=hdl)

convert(hdl='Verilog')
convert(hdl='VHDL')

The generated Verilog code looks as follows:

// File: bin2gray.v
// Generated by MyHDL 1.0dev
// Date: Mon May 23 16:09:27 2016

`timescale 1ns/10ps

module bin2gray (
B,
G

);
// Gray encoder.
//
// B -- binary input
// G -- Gray encoded output

input [7:0] B;
output [7:0] G;
wire [7:0] G;

assign G = ((B >>> 1) ^ B);

endmodule

The generated VHDL code looks as follows:

-- File: bin2gray.vhd
-- Generated by MyHDL 1.0dev
-- Date: Mon May 23 16:09:27 2016

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use std.textio.all;

use work.pck_myhdl_10.all;

entity bin2gray is
port (

B: in unsigned(7 downto 0);
G: out unsigned(7 downto 0)

(continues on next page)
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);
end entity bin2gray;
-- Gray encoder.
--
-- B -- binary input
-- G -- Gray encoded output

architecture MyHDL of bin2gray is

begin

G <= (shift_right(B, 1) xor B);

end architecture MyHDL;

11.4 A hierarchical design

The converter can handle designs with an arbitrarily deep hierarchy.

For example, suppose we want to design an incrementer with Gray code output. Using the
designs from previous sections, we can proceed as follows:

from myhdl import block, Signal, modbv

from bin2gray import bin2gray
from inc import inc

@block
def gray_inc(graycnt, enable, clock, reset, width):

bincnt = Signal(modbv(0)[width:])

inc_0 = inc(bincnt, enable, clock, reset)
bin2gray_0 = bin2gray(B=bincnt, G=graycnt)

return inc_0, bin2gray_0

According to Gray code properties, only a single bit will change in consecutive values. How-
ever, as the bin2gray module is combinatorial, the output bits may have transient glitches,
which may not be desirable. To solve this, let’s create an additional level of hierarchy and add
an output register to the design. (This will create an additional latency of a clock cycle, which
may not be acceptable, but we will ignore that here.)

from myhdl import block, always_seq, Signal, modbv

from gray_inc import gray_inc

(continues on next page)
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@block
def gray_inc_reg(graycnt, enable, clock, reset, width):

graycnt_comb = Signal(modbv(0)[width:])

gray_inc_0 = gray_inc(graycnt_comb, enable, clock, reset, width)

@always_seq(clock.posedge, reset=reset)
def reg_0():

graycnt.next = graycnt_comb

return gray_inc_0, reg_0

We can convert this hierarchical design as follows:

from myhdl import Signal, ResetSignal, modbv

from gray_inc_reg import gray_inc_reg

def convert_gray_inc_reg(hdl, width=8):
graycnt = Signal(modbv(0)[width:])
enable = Signal(bool())
clock = Signal(bool())
reset = ResetSignal(0, active=0, isasync=True)

inst = gray_inc_reg(graycnt, enable, clock, reset, width)
inst.convert(hdl)

convert_gray_inc_reg(hdl='Verilog')
convert_gray_inc_reg(hdl='VHDL')

The Verilog output code looks as follows:

// File: gray_inc_reg.v
// Generated by MyHDL 1.0dev
// Date: Thu Jun 23 19:06:43 2016

`timescale 1ns/10ps

module gray_inc_reg (
graycnt,
enable,
clock,
reset

);

output [7:0] graycnt;
reg [7:0] graycnt;
input enable;
input clock;
input reset;

(continues on next page)
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wire [7:0] graycnt_comb;
reg [7:0] gray_inc_1_bincnt;

always @(posedge clock, negedge reset) begin: GRAY_INC_REG_GRAY_INC_1_INC_
→˓1_SEQ

if (reset == 0) begin
gray_inc_1_bincnt <= 0;

end
else begin

if (enable) begin
gray_inc_1_bincnt <= (gray_inc_1_bincnt + 1);

end
end

end

assign graycnt_comb = ((gray_inc_1_bincnt >>> 1) ^ gray_inc_1_bincnt);

always @(posedge clock, negedge reset) begin: GRAY_INC_REG_REG_0
if (reset == 0) begin

graycnt <= 0;
end
else begin

graycnt <= graycnt_comb;
end

end

endmodule

The VHDL output code looks as follows:

-- File: gray_inc_reg.vhd
-- Generated by MyHDL 1.0dev
-- Date: Thu Jun 23 19:06:43 2016

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use std.textio.all;

use work.pck_myhdl_10.all;

entity gray_inc_reg is
port (

graycnt: out unsigned(7 downto 0);
enable: in std_logic;
clock: in std_logic;
reset: in std_logic

);
end entity gray_inc_reg;

(continues on next page)
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architecture MyHDL of gray_inc_reg is

signal graycnt_comb: unsigned(7 downto 0);
signal gray_inc_1_bincnt: unsigned(7 downto 0);

begin

GRAY_INC_REG_GRAY_INC_1_INC_1_SEQ: process (clock, reset) is
begin

if (reset = '0') then
gray_inc_1_bincnt <= to_unsigned(0, 8);

elsif rising_edge(clock) then
if bool(enable) then

gray_inc_1_bincnt <= (gray_inc_1_bincnt + 1);
end if;

end if;
end process GRAY_INC_REG_GRAY_INC_1_INC_1_SEQ;

graycnt_comb <= (shift_right(gray_inc_1_bincnt, 1) xor gray_inc_1_bincnt);

GRAY_INC_REG_REG_0: process (clock, reset) is
begin

if (reset = '0') then
graycnt <= to_unsigned(0, 8);

elsif rising_edge(clock) then
graycnt <= graycnt_comb;

end if;
end process GRAY_INC_REG_REG_0;

end architecture MyHDL;

Note that the output is a flat “net list of blocks”, and that hierarchical signal names are gener-
ated as necessary.

11.5 Optimizations for finite state machines

As often in hardware design, finite state machines deserve special attention.

In Verilog and VHDL, finite state machines are typically described using case statements.
Python doesn’t have a case statement, but the converter recognizes particular if-then-else struc-
tures and maps them to case statements. This optimization occurs when a variable whose
type is an enumerated type is sequentially tested against enumeration items in an if-then-else
structure. Also, the appropriate synthesis pragmas for efficient synthesis are generated in the
Verilog code.

As a further optimization, function enum was enhanced to support alternative encoding
schemes elegantly, using an additional parameter encoding. For example:
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t_State = enum('SEARCH', 'CONFIRM', 'SYNC', encoding='one_hot')

The default encoding is 'binary'; the other possibilities are 'one_hot' and 'one_cold'.
This parameter only affects the conversion output, not the behavior of the type. The generated
Verilog code for case statements is optimized for an efficient implementation according to the
encoding. Note that in contrast, a Verilog designer has to make nontrivial code changes to
implement a different encoding scheme.

As an example, consider the following finite state machine, whose state variable uses the enu-
meration type defined above:

ACTIVE_LOW = bool(0)
FRAME_SIZE = 8
t_State = enum('SEARCH', 'CONFIRM', 'SYNC', encoding="one_hot")

def FramerCtrl(SOF, state, syncFlag, clk, reset_n):

""" Framing control FSM.

SOF -- start-of-frame output bit
state -- FramerState output
syncFlag -- sync pattern found indication input
clk -- clock input
reset_n -- active low reset

"""

index = Signal(intbv(0)[8:]) # position in frame

@always(clk.posedge, reset_n.negedge)
def FSM():

if reset_n == ACTIVE_LOW:
SOF.next = 0
index.next = 0
state.next = t_State.SEARCH

else:
index.next = (index + 1) % FRAME_SIZE
SOF.next = 0
if state == t_State.SEARCH:

index.next = 1
if syncFlag:

state.next = t_State.CONFIRM
elif state == t_State.CONFIRM:

if index == 0:
if syncFlag:

state.next = t_State.SYNC
else:

state.next = t_State.SEARCH
elif state == t_State.SYNC:

if index == 0:
if not syncFlag:

state.next = t_State.SEARCH
SOF.next = (index == FRAME_SIZE-1)

else:
raise ValueError("Undefined state")

(continues on next page)
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return FSM

The conversion is done as before:

SOF = Signal(bool(0))
syncFlag = Signal(bool(0))
clk = Signal(bool(0))
reset_n = Signal(bool(1))
state = Signal(t_State.SEARCH)
toVerilog(FramerCtrl, SOF, state, syncFlag, clk, reset_n)
toVHDL(FramerCtrl, SOF, state, syncFlag, clk, reset_n)

The Verilog output looks as follows:

module FramerCtrl (
SOF,
state,
syncFlag,
clk,
reset_n

);

output SOF;
reg SOF;
output [2:0] state;
reg [2:0] state;
input syncFlag;
input clk;
input reset_n;

reg [7:0] index;

always @(posedge clk, negedge reset_n) begin: FRAMERCTRL_FSM
if ((reset_n == 0)) begin

SOF <= 0;
index <= 0;
state <= 3'b001;

end
else begin

index <= ((index + 1) % 8);
SOF <= 0;
// synthesis parallel_case full_case
casez (state)

3'b??1: begin
index <= 1;
if (syncFlag) begin

state <= 3'b010;
end

end
3'b?1?: begin

if ((index == 0)) begin
if (syncFlag) begin

state <= 3'b100;

(continues on next page)
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end
else begin

state <= 3'b001;
end

end
end
3'b1??: begin

if ((index == 0)) begin
if ((!syncFlag)) begin

state <= 3'b001;
end

end
SOF <= (index == (8 - 1));

end
default: begin

$finish;
end

endcase
end

end

endmodule

The VHDL output looks as follows:

package pck_FramerCtrl is

type t_enum_t_State_1 is (
SEARCH,
CONFIRM,
SYNC

);
attribute enum_encoding of t_enum_t_State_1: type is "001 010 100";

end package pck_FramerCtrl;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use std.textio.all;

use work.pck_myhdl_06.all;

use work.pck_FramerCtrl.all;

entity FramerCtrl is
port (

SOF: out std_logic;
state: inout t_enum_t_State_1;
syncFlag: in std_logic;
clk: in std_logic;
reset_n: in std_logic

);
end entity FramerCtrl;

architecture MyHDL of FramerCtrl is
(continues on next page)
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signal index: unsigned(7 downto 0);

begin

FRAMERCTRL_FSM: process (clk, reset_n) is
begin

if (reset_n = '0') then
SOF <= '0';
index <= "00000000";
state <= SEARCH;

elsif rising_edge(clk) then
index <= ((index + 1) mod 8);
SOF <= '0';
case state is

when SEARCH =>
index <= "00000001";
if to_boolean(syncFlag) then

state <= CONFIRM;
end if;

when CONFIRM =>
if (index = 0) then

if to_boolean(syncFlag) then
state <= SYNC;

else
state <= SEARCH;

end if;
end if;

when SYNC =>
if (index = 0) then

if (not to_boolean(syncFlag)) then
state <= SEARCH;

end if;
end if;
SOF <= to_std_logic(signed(resize(index, 9)) = (8 - 1));

when others =>
assert False report "End of Simulation" severity Failure;

end case;
end if;

end process FRAMERCTRL_FSM;

end architecture MyHDL;

11.6 RAM inference

Certain synthesis tools can infer RAM structures. To support this feature, the converter maps
lists of signals in MyHDL to Verilog memories and VHDL arrays.

The following MyHDL example is a ram model that uses a list of signals to model the internal
memory.

def RAM(dout, din, addr, we, clk, depth=128):

(continues on next page)
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""" Ram model """

mem = [Signal(intbv(0)[8:]) for i in range(depth)]

@always(clk.posedge)
def write():

if we:
mem[addr].next = din

@always_comb
def read():

dout.next = mem[addr]

return write, read

With the appropriate signal definitions for the interface ports, it is converted to the following
Verilog code. Note how the list of signals mem is mapped to a Verilog memory.

module ram (
dout,
din,
addr,
we,
clk

);

output [7:0] dout;
wire [7:0] dout;
input [7:0] din;
input [6:0] addr;
input we;
input clk;

reg [7:0] mem [0:128-1];

always @(posedge clk) begin: RAM_1_WRITE
if (we) begin

mem[addr] <= din;
end

end

assign dout = mem[addr];

endmodule

In VHDL, the list of MyHDL signals is modeled as a VHDL array signal:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

use work.pck_myhdl_06.all;

(continues on next page)

86 Chapter 11. Conversion examples



MyHDL manual, Release 0.11

(continued from previous page)

entity ram is
port (

dout: out unsigned(7 downto 0);
din: in unsigned(7 downto 0);
addr: in unsigned(6 downto 0);
we: in std_logic;
clk: in std_logic

);
end entity ram;

architecture MyHDL of ram is

type t_array_mem is array(0 to 128-1) of unsigned(7 downto 0);
signal mem: t_array_mem;

begin

RAM_WRITE: process (clk) is
begin

if rising_edge(clk) then
if to_boolean(we) then

mem(to_integer(addr)) <= din;
end if;

end if;
end process RAM_WRITE;

dout <= mem(to_integer(addr));

end architecture MyHDL;

11.7 ROM inference

Some synthesis tools can infer a ROM memory from a case statement. The Verilog converter
can perform the expansion into a case statement automatically, based on a higher level descrip-
tion. The ROM access is described in a single line, by indexing into a tuple of integers. The
tuple can be described manually, but also by programmatical means. Note that a tuple is used
instead of a list to stress the read-only character of the memory.

The following example illustrates this functionality. ROM access is described as follows:

def rom(dout, addr, CONTENT):

@always_comb
def read():

dout.next = CONTENT[int(addr)]

return read

The ROM content is described as a tuple of integers. When the ROM content is defined, the
conversion can be performed:
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CONTENT = (17, 134, 52, 9)
dout = Signal(intbv(0)[8:])
addr = Signal(intbv(0)[4:])

toVerilog(rom, dout, addr, CONTENT)
toVHDL(rom, dout, addr, CONTENT)

The Verilog output code is as follows:

module rom (
dout,
addr

);

output [7:0] dout;
reg [7:0] dout;
input [3:0] addr;

always @(addr) begin: ROM_READ
// synthesis parallel_case full_case
case (addr)

0: dout <= 17;
1: dout <= 134;
2: dout <= 52;
default: dout <= 9;

endcase
end

endmodule

The VHDL output code is as follows:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use std.textio.all;

use work.pck_myhdl_06.all;

entity rom is
port (

dout: out unsigned(7 downto 0);
addr: in unsigned(3 downto 0)

);
end entity rom;

architecture MyHDL of rom is

begin

ROM_READ: process (addr) is
begin

case to_integer(addr) is
when 0 => dout <= "00010001";
when 1 => dout <= "10000110";

(continues on next page)
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when 2 => dout <= "00110100";
when others => dout <= "00001001";

end case;
end process ROM_READ;

end architecture MyHDL;

11.8 User-defined code

MyHDL provides a way to include user-defined code during the conversion process, using the
special function attributes vhdl_code and verilog_code.

For example:

def inc_comb(nextCount, count, n):

@always(count)
def logic():

# do nothing here
pass

nextCount.driven = "wire"

return logic

inc_comb.verilog_code =\
"""
assign $nextCount = ($count + 1) % $n;
"""

inc_comb.vhdl_code =\
"""
$nextCount <= ($count + 1) mod $n;
"""

The converted code looks as follows in Verilog:

module inc_comb (
nextCount,
count

);

output [7:0] nextCount;
wire [7:0] nextCount;
input [7:0] count;

assign nextCount = (count + 1) % 256;

endmodule

and as follows in VHDL:
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library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

use work.pck_myhdl_06.all;

entity inc_comb is
port (

nextCount: out unsigned(7 downto 0);
count: in unsigned(7 downto 0)

);
end entity inc_comb;

architecture MyHDL of inc_comb is

begin

nextCount <= (count + 1) mod 256;

end architecture MyHDL;

In this example, conversion of the inc_comb function is bypassed and the user-defined code
is inserted instead. The user-defined code is a Python template string that can refer to signals
and parameters in the MyHDL context through $-based substitutions. During conversion, the
appropriate hierarchical names and parameter values will be substituted.

The MyHDL code contains the following assignment:

nextCount.driven = "wire"

This specifies that the nextCount signal is driven as a Verilog wire from this module.

For more info about user-defined code, see User-defined code.
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CHAPTER 12

Reference

MyHDL is implemented as a Python package called myhdl. This chapter describes the objects
that are exported by this package.

12.1 Simulation

12.1.1 The Simulation class

class Simulation(arg[, arg ...])
Class to construct a new simulation. Each argument should be a MyHDL instance.
In MyHDL, an instance is recursively defined as being either a sequence of instances,
or a MyHDL generator, or a Cosimulation object. See section MyHDL generators and
trigger objects for the definition of MyHDL generators and their interaction with a
Simulation object. See Section Co-simulation for the Cosimulation object. At most
one Cosimulation object can be passed to a Simulation constructor.

A Simulation object has the following method:

Simulation.run([duration])
Run the simulation forever (by default) or for a specified duration.

Simulation.quit()
Quit the simulation after it has run for a specified duration. The method should be called
(the simulation instance must be quit) before another simulation instance is created. The
method is called by default when the simulation is run forever.

12.1.2 Simulation support functions

now()
Returns the current simulation time.
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exception StopSimulation
Base exception that is caught by the Simulation.run() method to stop a simulation.

12.1.3 Waveform tracing

traceSignals(func [, *args] [, **kwargs])
Enables signal tracing to a VCD file for waveform viewing. func is a function that returns
an instance. traceSignals calls func under its control and passes *args and **kwargs to
the call. In this way, it finds the hierarchy and the signals to be traced.

The return value is the same as would be returned by the call func(*args,

**kwargs). The top-level instance name and the basename of the VCD output file-
name is func.func_name by default. If the VCD file exists already, it will be moved to
a backup file by attaching a timestamp to it, before creating the new file.

The traceSignals callable has the following attribute:

name
This attribute is used to overwrite the default top-level instance name and the base-
name of the VCD output filename.

directory
This attribute is used to set the directory to which VCD files are written. By default,
the current working directory is used.

filename
This attribute is used to set the filename to which VCD files are written. By default,
the name attribbute is used.

timescale
This attribute is used to set the timescale corresponding to unit steps, according to
the VCD format. The assigned value should be a string. The default timescale is
“1ns”.

12.2 Modeling

12.2.1 The block decorator

block()
The block decorator enables a method-based API which is more consistent, simplifies
implementation, and reduces the size of the myhdl namespace.

The methods work on block instances, created by calling a function decorated with the
block decorator:

@block
def myblock(<ports>):
...
return <instances>

inst = myblock(<port-associations>)
# inst supports the methods of the block instance API

The API on a block instance looks as follows:
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<block_instance>.run_sim(duration=None)
Run a simulation “forever” (default) or for a specified duration.

<block_instance>.config_sim(backend='myhdl', trace=False)
Optional simulation configuration:

backend: Defaults to ‘myhdl

trace: Enable waveform tracing, default False.

<block_instance>.quit_sim()
Quit an active simulation. This is method is currently required because only a single
simulation can be active.

<block_instance>.convert(hdl='Verilog', **kwargs)
Converts MyHDL code to a target HDL.

hdl: ‘VHDL’ or ‘Verilog’. Defaults to Verilog.

Supported keyword arguments:

path: Destination folder. Defaults to current working dir.

name: Module and output file name. Defaults to self.mod.__name__.

trace: Whether the testbench should dump all signal waveforms. Defaults to False.

testbench: Verilog only. Specifies whether a testbench should be created. Defaults to True.

timescale: timescale parameter. Defaults to ‘1ns/10ps’. Verilog only.

<block_instance>.verify_convert()
Verify conversion output, by comparing target HDL simulation log with MyHDL simu-
lation log.

<block_instance>.analyze_convert()
Analyze conversion output by compilation with target HDL compiler.

12.2.2 Signals

The SignalType type

class SignalType
This type is the abstract base type of all signals. It is not used to construct signals, but it
can be used to check whether an object is a signal.

Regular signals

class Signal([val=None] [, delay=0])
This class is used to construct a new signal and to initialize its value to val. Optionally, a
delay can be specified.

A Signal object has the following attributes:

posedge
Attribute that represents the positive edge of a signal, to be used in sensi-
tivity lists.
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negedge
Attribute that represents the negative edge of a signal, to be used in sensi-
tivity lists.

next
Read-write attribute that represents the next value of the signal.

val
Read-only attribute that represents the current value of the signal.

This attribute is always available to access the current value; however in
many practical case it will not be needed. Whenever there is no ambi-
guity, the Signal object’s current value is used implicitly. In particular, all
Python’s standard numeric, bit-wise, logical and comparison operators are
implemented on a Signal object by delegating to its current value. The ex-
ception is augmented assignment. These operators are not implemented as
they would break the rule that the current value should be a read-only at-
tribute. In addition, when a Signal object is assigned to the next attribute
of another Signal object, its current value is assigned instead.

min
Read-only attribute that is the minimum value (inclusive) of a numeric
signal, or None for no minimum.

max
Read-only attribute that is the maximum value (exclusive) of a numeric
signal, or None for no maximum.

driven
Writable attribute that can be used to indicate that the signal is supposed to
be driven from the MyHDL code, and possibly how it should be declared
in Verilog after conversion. The allowed values are 'reg', 'wire', True
and False.

This attribute is useful when the converter cannot infer automatically
whether and how a signal is driven. This occurs when the signal is driven
from user-defined code. 'reg' and 'wire' are “true” values that permit
finer control for the Verilog case.

read
Writable boolean attribute that can be used to indicate that the signal is
read.

This attribute is useful when the converter cannot infer automatically
whether a signal is read. This occurs when the signal is read from user-
defined code.

A Signal object also has a call interface:

__call__(left[, right=None])
This method returns a _SliceSignal shadow signal.

class ResetSignal(val, active, isasync)
This Signal subclass defines reset signals. val, active, and isasync are mandatory argu-
ments. val is a boolean value that specifies the initial value, active is a boolean value that
specifies the active level. isasync is a boolean value that specifies the reset style: asyn-
chronous (True) or synchronous (False).
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This class should be used in conjunction with the always_seq decorator.

Shadow signals

class _SliceSignal(sig, left[, right=None])
This class implements read-only structural slicing and indexing. It creates a new shadow
signal of the slice or index of the parent signal sig. If the right parameter is omitted, you
get indexing instead of slicing. Parameters left and right have the usual meaning for slice
indices: in particular, left is non-inclusive but right is inclusive. sig should be appropriate
for slicing and indexing, which means it should be based on intbv in practice.

The class constructor is not intended to be used explicitly. Instead, use the call interface
of a regular signal.The following calls are equivalent:

sl = _SliceSignal(sig, left, right)

sl = sig(left, right)

class ConcatSignal(*args)
This class creates a new shadow signal of the concatenation of its arguments.

You can pass an arbitrary number of arguments to the constructor. The arguments should
be bit-oriented with a defined number of bits. The following argument types are sup-
ported: intbv objects with a defined bit width, bool objects, signals of the previous
objects, and bit strings.

The new signal follows the value changes of the signal arguments. The non-signal argu-
ments are used to define constant values in the concatenation.

class TristateSignal(val)
This class is used to construct a new tristate signal. The underlying type is specified by
the val parameter. It is a Signal subclass and has the usual attributes, with one exception:
it doesn’t support the next attribute. Consequently, direct signal assignment to a tristate
signal is not supported. The initial value is the tristate value None. The current value of
a tristate is determined by resolving the values from its drivers. When exactly one driver
value is different from None, that is the resolved value; otherwise it is None. When more
than one driver value is different from None, a contention warning is issued.

This class has the following method:

driver()
Returns a new driver to the tristate signal. It is initialized to None. A driver object is
an instance of a special SignalType subclass. In particular, its next attribute can
be used to assign a new value to it.

12.2.3 MyHDL generators and trigger objects

MyHDL generators are standard Python generators with specialized yield statements. In
hardware description languages, the equivalent statements are called sensitivity lists. The gen-
eral format of yield statements in in MyHDL generators is:

yield clause [, clause . . . ]

12.2. Modeling 95

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/reference/simple_stmts.html#yield
https://docs.python.org/3/reference/simple_stmts.html#yield
https://docs.python.org/3/reference/simple_stmts.html#yield


MyHDL manual, Release 0.11

When a generator executes a yield statement, its execution is suspended at that point. At the
same time, each clause is a trigger object which defines the condition upon which the generator
should be resumed. However, per invocation of a yield statement, the generator resumes
exactly once, regardless of the number of clauses. This happens on the first trigger that occurs.

In this section, the trigger objects and their functionality will be described.

Some MyHDL objects that are described elsewhere can directly be used as trigger objects. In
particular, a Signal can be used as a trigger object. Whenever a signal changes value, the
generator resumes. Likewise, the objects referred to by the signal attributes posedge and
negedge are trigger objects. The generator resumes on the occurrence of a positive or a neg-
ative edge on the signal, respectively. An edge occurs when there is a change from false to
true (positive) or vice versa (negative). For the full description of the Signal class and its
attributes, see section Signals.

Furthermore, MyHDL generators can be used as clauses in yield statements. Such a gener-
ator is forked, and starts operating immediately, while the original generator waits for it to
complete. The original generator resumes when the forked generator returns.

In addition, the following functions return trigger objects:

delay(t)
Return a trigger object that specifies that the generator should resume after a delay t.

join(arg[, arg ...])
Join a number of trigger objects together and return a joined trigger object. The effect is
that the joined trigger object will trigger when all of its arguments have triggered.

Finally, as a special case, the Python None object can be present in a yield statement. It is the
do-nothing trigger object. The generator immediately resumes, as if no yield statement were
present. This can be useful if the yield statement also has generator clauses: those generators
are forked, while the original generator resumes immediately.

12.2.4 Decorator functions to create generators

MyHDL defines a number of decorator functions, that make it easier to create generators from
local generator functions.

instance()
The instance decorator is the most general decorator. It automatically creates a gener-
ator by calling the decorated generator function.

It is used as follows:

def top(...):
...
@instance
def inst():

<generator body>
...
return inst, ...

This is equivalent to:

def top(...):
...

(continues on next page)
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def _gen_func():
<generator body>

...
inst = _gen_func()
...
return inst, ...

always(arg[, *args])
The always decorator is a specialized decorator that targets a widely used coding pat-
tern. It is used as follows:

def top(...):
...
@always(event1, event2, ...)
def inst()

<body>
...
return inst, ...

This is equivalent to the following:

def top(...):
...
def _func():

<body>

def _gen_func()
while True:

yield event1, event2, ...
_func()

...
inst = _gen_func()
...
return inst, ...

The argument list of the decorator corresponds to the sensitivity list. Only signals, edge
specifiers, or delay objects are allowed. The decorated function should be a classic func-
tion.

always_comb()
The always_comb decorator is used to describe combinatorial logic.

def top(...):
...
@always_comb
def comb_inst():

<combinatorial body>
...
return comb_inst, ...

The always_comb decorator infers the inputs of the combinatorial logic and the corre-
sponding sensitivity list automatically. The decorated function should be a classic func-
tion.

always_seq(edge, reset)
The always_seq decorator is used to describe sequential (clocked) logic.
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The edge parameter should be a clock edge (clock.posedge or clock.negedge). The
reset parameter should a ResetSignal object.

12.2.5 MyHDL data types

MyHDL defines a number of data types that are useful for hardware description.

The intbv class

class intbv([val=0] [, min=None] [, max=None])
This class represents int-like objects with some additional features that make it suitable
for hardware design.

The val argument can be an int, a long, an intbv or a bit string (a string with only ‘0’s
or ‘1’s). For a bit string argument, the value is calculated as in int(bitstring, 2).
The optional min and max arguments can be used to specify the minimum and maximum
value of the intbv object. As in standard Python practice for ranges, the minimum value
is inclusive and the maximum value is exclusive.

The minimum and maximum values of an intbv object are available as attributes:

min
Read-only attribute that is the minimum value (inclusive) of an intbv , or None for
no minimum.

max
Read-only attribute that is the maximum value (exclusive) of an intbv , or None for
no maximum.

signed()
Interprets the msb bit as as sign bit and extends it into the higher-order bits of the
underlying object value. The msb bit is the highest-order bit within the object’s bit
width.

Return type integer

Unlike int objects, intbv objects are mutable; this is also the reason for their existence. Muta-
bility is needed to support assignment to indexes and slices, as is common in hardware design.
For the same reason, intbv is not a subclass from int, even though int provides most of the
desired functionality. (It is not possible to derive a mutable subtype from an immutable base
type.)

An intbv object supports the same comparison, numeric, bitwise, logical, and conversion
operations as int objects. See http://www.python.org/doc/current/lib/typesnumeric.html
for more information on such operations. In all binary operations, intbv objects can work
together with int objects. For mixed-type numeric operations, the result type is an int or a
long. For mixed-type bitwise operations, the result type is an intbv .

In addition, intbv supports a number of sequence operators. In particular, the len func-
tion returns the object’s bit width. Furthermore, intbv objects support indexing and slicing
operations:
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Operation Result Notes
bv[i] item i of bv (1)
bv[i] = x item i of bv is replaced by x (1)
bv[i:j] slice of bv from i downto j (2)(3)
bv[i:j] = t slice of bv from i downto j is replaced by t (2)(4)

(1) Indexing follows the most common hardware design conventions: the lsb bit is the right-
most bit, and it has index 0. This has the following desirable property: if the intbv
value is decomposed as a sum of powers of 2, the bit with index i corresponds to the
term 2**i.

(2) In contrast to standard Python sequencing conventions, slicing range are downward.
This is a consequence of the indexing convention, combined with the common conven-
tion that the most significant digits of a number are the leftmost ones. The Python con-
vention of half-open ranges is followed: the bit with the highest index is not included.
However, it is the leftmost bit in this case. As in standard Python, this takes care of one-
off issues in many practical cases: in particular, bv[i:] returns i bits; bv[i:j] has i-j
bits. When the low index j is omitted, it defaults to 0. When the high index i is omitted,
it means “all” higher order bits.

(3) The object returned from a slicing access operation is always a positive intbv ; higher
order bits are implicitly assumed to be zero. The bit width is implicitly stored in the
return object, so that it can be used in concatenations and as an iterator. In addition, for
a bit width w, the min and max attributes are implicitly set to 0 and 2**w, respectively.

(4) When setting a slice to a value, it is checked whether the slice is wide enough.

In addition, an intbv object supports the iterator protocol. This makes it possible to iterate
over all its bits, from the high index to index 0. This is only possible for intbv objects with a
defined bit width.

The modbv class

class modbv([val=0] [, min=None] [, max=None])
The modbv class implements modular bit vector types.

It is implemented as a subclass of intbv and supports the same parameters and op-
erators. The difference is in the handling of the min and max boundaries. Instead of
throwing an exception when those constraints are exceeded, the value of modbv objects
wraps around according to the following formula:

val = (val - min) % (max - min) + min

This formula is a generalization of modulo wrap-around behavior that is often useful
when describing hardware system behavior.

The enum factory function

enum(arg [, arg ...] [, encoding=’binary’])
Returns an enumeration type.

The arguments should be string literals that represent the desired names of the enumera-
tion type attributes. The returned type should be assigned to a type name. For example:
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t_EnumType = enum('ATTR_NAME_1', 'ATTR_NAME_2', ...)

The enumeration type identifiers are available as attributes of the type name, for exam-
ple: t_EnumType.ATTR_NAME_1

The optional keyword argument encoding specifies the encoding scheme used in Verilog
output. The available encodings are 'binary', 'one_hot', and 'one_cold'.

12.2.6 Modeling support functions

MyHDL defines a number of additional support functions that are useful for hardware de-
scription.

bin

bin(num[, width])
Returns a bit string representation. If the optional width is provided, and if it is larger
than the width of the default representation, the bit string is padded with the sign bit.

This function complements the standard Python conversion functions hex and oct. A
binary string representation is often useful in hardware design.

Return type string

concat

concat(base[, arg ...])
Returns an intbv object formed by concatenating the arguments.

The following argument types are supported: intbv objects with a defined bit width,
bool objects, signals of the previous objects, and bit strings. All these objects have a
defined bit width.

The first argument base is special as it does not need to have a defined bit width. In
addition to the previously mentioned objects, unsized intbv , int and long objects are
supported, as well as signals of such objects.

Return type intbv

downrange

downrange(high[, low=0])
Generates a downward range list of integers.

This function is modeled after the standard range function, but works in the downward
direction. The returned interval is half-open, with the high index not included. low is
optional and defaults to zero. This function is especially useful in conjunction with the
intbv class, that also works with downward indexing.
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instances

instances()
Looks up all MyHDL instances in the local name space and returns them in a list.

Return type list

12.3 Co-simulation

12.3.1 MyHDL

class Cosimulation(exe, **kwargs)
Class to construct a new Cosimulation object.

The exe argument is the command to execute an HDL simulation, which can be either a
string of the entire command line or a list of strings. In the latter case, the first element
is the executable, and subsequent elements are program arguments. Providing a list
of arguments allows Python to correctly handle spaces or other characters in program
arguments.

The kwargs keyword arguments provide a named association between signals (regs &
nets) in the HDL simulator and signals in the MyHDL simulator. Each keyword should
be a name listed in a $to_myhdl or $from_myhdl call in the HDL code. Each argument
should be a Signal declared in the MyHDL code.

12.3.2 Verilog

$to_myhdl(arg, [, arg ...])
Task that defines which signals (regs & nets) should be read by the MyHDL simulator.
This task should be called at the start of the simulation.

$from_myhdl(arg, [, arg ...])
Task that defines which signals should be driven by the MyHDL simulator. In Verilog,
only regs can be specified. This task should be called at the start of the simulation.

12.4 Conversion to Verilog and VHDL

12.4.1 Conversion

toVerilog(func [, *args] [, **kwargs])

Converts a MyHDL design instance to equivalent Verilog code, and also gen-
erates a test bench to verify it. func is a function that returns an instance.
toVerilog calls func under its control and passes *args and **kwargs to the
call.

The return value is the same as would be returned by the call func(*args,
**kwargs). It should be assigned to an instance name.

The top-level instance name and the basename of the Verilog output filename
is func.func_name by default.
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For more information about the restrictions on convertible MyHDL code, see
section The convertible subset in Chapter Conversion to Verilog and VHDL.

toVerilog has the following attribute:

name
This attribute is used to overwrite the default top-level instance name and the base-
name of the Verilog output filename.

directory
This attribute is used to set the directory to which converted verilog files are written.
By default, the current working directory is used.

timescale
This attribute is used to set the timescale in Verilog format. The assigned value
should be a string. The default timescale is “1ns/10ps”.

toVHDL(func[, *args][, **kwargs])
Converts a MyHDL design instance to equivalent VHDL code. func is a function that
returns an instance. toVHDL calls func under its control and passes *args and **kwargs to
the call.

The return value is the same as would be returned by the call func(*args,

**kwargs). It can be assigned to an instance name. The top-level instance name and
the basename of the Verilog output filename is func.func_name by default.

toVHDL has the following attributes:

name
This attribute is used to overwrite the default top-level instance name and the base-
name of the VHDL output.

directory
This attribute is used to set the directory to which converted VHDL files are written.
By default, the current working directory is used.

component_declarations
This attribute can be used to add component declarations to the VHDL output.
When a string is assigned to it, it will be copied to the appropriate place in the
output file.

library
This attribute can be used to set the library in the VHDL output file. The assigned
value should be a string. The default library is work.

std_logic_ports
This boolean attribute can be used to have only std_logic type ports on the top-
level interface (when True) instead of the default signed/unsigned types (when
False, the default).

12.4.2 User-defined Verilog and VHDL code

User-defined code can be inserted in the Verilog or VHDL output through the use of function
attributes. Suppose a function <func> defines a hardware module. User-defined code can be
specified for the function with the following function attributes:
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<func>.vhdl_code
A template string for user-defined code in the VHDL output.

<func>.verilog_code
A template string for user-defined code in the Verilog output.

When such a function attribute is defined, the normal conversion process is bypassed and the
user-defined code is inserted instead. The template strings should be suitable for the standard
string.Template constructor. They can contain interpolation variables (indicated by a $
prefix) for all signals in the context. Note that the function attribute can be defined anywhere
where <func> is visible, either outside or inside the function itself.

These function attributes cannot be used with generator functions or decorated local functions,
as these are not elaborated before simulation or conversion. In other words, they can only be
used with functions that define structure.

12.5 Conversion output verification

MyHDL provides an interface to verify converted designs. This is used extensively in the
package itself to verify the conversion functionality. This capability is exported by the package
so that users can use it also.

12.5.1 Verification interface

All functions related to conversion verification are implemented in the myhdl.conversion
package.

verify(func[, *args][, **kwargs])
Used like toVHDL and toVerilog. It converts MyHDL code, simulates both the My-
HDL code and the HDL code and reports any differences. The default HDL simulator is
GHDL.

This function has the following attribute:

simulator
Used to set the name of the HDL simulator. "GHDL" is the default.

analyze(func[, *args][, **kwargs])
Used like toVHDL and toVerilog. It converts MyHDL code, and analyzes the resulting
HDL. Used to verify whether the HDL output is syntactically correct.

This function has the following attribute:

simulator
Used to set the name of the HDL simulator used to analyze the code. "GHDL" is the
default.

12.5.2 HDL simulator registration

To use a HDL simulator to verify conversions, it needs to be registered first. This is needed
once per simulator.

A number of HDL simulators are preregistered in the MyHDL distribution, as follows:
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Identifier Simulator
"GHDL" The GHDL VHDL simulator
"vsim" The ModelSim VHDL simulator
"icarus" The Icarus Verilog simulator
"cver" The cver Verilog simulator
"vlog" The Modelsim VHDL simulator

Of course, a simulator has to be installed before it can be used.

If another simulator is required, it has to be registered by the user. This is done with the
function registerSimulation that lives in the module myhdl.conversion._verify.
The same module also has the registrations for the predefined simulators.

The verification functions work by comparing the HDL simulator output with the MyHDL
simulator output. Therefore, they have to deal with the specific details of each HDL sim-
ulator output, which may be somewhat tricky. This is reflected in the interface of the
registerSimulation function. As registration is rarely needed, this interface is not fur-
ther described here.

Please refer to the source code in myhdl.conversion._verify to learn how registration
works. If you need help, please contact the MyHDL community.

104 Chapter 12. Reference



Python Module Index

m
myhdl, 90
myhdl.conversion, 103

105



MyHDL manual, Release 0.11

106 Python Module Index



Index

Symbols
_SliceSignal (class in myhdl), 95
__call__() (Signal method), 94

A
always() (in module myhdl), 97
always_comb() (in module myhdl), 97
always_seq() (in module myhdl), 97
analyze() (in module myhdl.conversion), 103

B
bin() (in module myhdl), 100
bit indexing, 14
bit slicing, 15
block() (in module myhdl), 92
bus-functional procedure, 33

C
combinatorial logic, 23
component_declarations (in module my-

hdl), 102
concat() (in module myhdl), 100
ConcatSignal (class in myhdl), 95
conditional instantiation, 19
Cosimulation (class in myhdl), 101

D
decorator

always, 8
instance, 10

decorators
about, 4

delay() (in module myhdl), 96
directory (in module myhdl), 92, 102
downrange() (in module myhdl), 100
driven (Signal attribute), 94
driver() (TristateSignal method), 95

E
enum()

example usage, 28
enum() (in module myhdl), 99
extreme programming, 45

F
filename (in module myhdl), 92

G
generators

tutorial on, 3

I
instance

defined, 10
in Python versus hardware

design, 11
instance() (in module myhdl), 96
instances() (in module myhdl), 101
intbv

basic usage, 13
bit width, 13
conversion, 63, 67
intbv.signed, 18
max, 13
min, 13

intbv (class in myhdl), 98

J
join() (in module myhdl), 96

L
library (in module myhdl), 102
lists of instances and signals, 20

M
max (intbv attribute), 98
max (Signal attribute), 94
min (intbv attribute), 98
min (Signal attribute), 94

107



MyHDL manual, Release 0.11

modbv (class in myhdl), 99
modeling

Finite State Machine, 28
high level, 33
memories, 38
object oriented, 41
RTL style, 23
structural, 19

module
in Python versus hardware

design, 11
myhdl (module), 90
myhdl.conversion (module), 103

N
name (in module myhdl), 92, 102
negedge (Signal attribute), 93
next (Signal attribute), 94
now() (in module myhdl), 91

P
posedge (Signal attribute), 93

Q
quit() (Simulation method), 91

R
read (Signal attribute), 94
ResetSignal (class in myhdl), 94
run() (Simulation method), 91

S
sensitivity list, 4, 35, 95
sequential logic, 25
Signal (class in myhdl), 93
SignalType (class in myhdl), 93
signed() (intbv method), 98
Simulation (class in myhdl), 91
simulator (in module myhdl.conversion), 103
std_logic_ports (in module myhdl), 102
StopSimulation, 91

T
timescale (in module myhdl), 92, 102
toVerilog() (in module myhdl), 101
toVHDL() (in module myhdl), 102
traceSignals() (in module myhdl), 92
TristateSignal (class in myhdl), 95

U
user-defined code

description, 68

example, 89

V
val (Signal attribute), 94
verify() (in module myhdl.conversion), 103
Verilog

always block, 4
non-blocking assignment, 9

VHDL
process, 4
signal assignment, 9

W
wait

for a rising edge, 9
for the completion of a

generator, 34
waveform viewing, 29

108 Index


	Overview
	Background information
	Prerequisites
	A small tutorial on generators
	About decorators

	Introduction to MyHDL
	A basic MyHDL simulation
	Signals and concurrency
	Parameters, ports and hierarchy
	Terminology review
	Some remarks on MyHDL and Python
	Summary and perspective

	Hardware-oriented types
	The intbv class
	Bit indexing
	Bit slicing
	The modbv class
	Unsigned and signed representation

	Structural modeling
	Introduction
	Conditional instantiation
	Converting between lists of signals and bit vectors
	Inferring the list of instances

	RTL modeling
	Introduction
	Combinatorial logic
	Sequential logic
	Finite State Machine modeling

	High level modeling
	Introduction
	Modeling with bus-functional procedures
	Modeling memories with built-in types
	Modeling errors using exceptions
	Object oriented modeling

	Unit testing
	Introduction
	The importance of unit tests
	Unit test development

	Co-simulation with Verilog
	Introduction
	The HDL side
	The MyHDL side
	Restrictions
	Implementation notes

	Conversion to Verilog and VHDL
	Introduction
	Solution description
	Features
	The convertible subset
	Conversion of lists of signals
	Conversion of Interfaces
	Assignment issues
	Excluding code from conversion
	User-defined code
	Template transformation
	Conversion output verification by co-simulation
	Conversion of test benches
	Methodology notes
	Known issues

	Conversion examples
	Introduction
	A small sequential design
	A small combinatorial design
	A hierarchical design
	Optimizations for finite state machines
	RAM inference
	ROM inference
	User-defined code

	Reference
	Simulation
	Modeling
	Co-simulation
	Conversion to Verilog and VHDL
	Conversion output verification

	Python Module Index
	Index

